Difference between revisions of "2021 Fall AMC 10A Problems/Problem 9"

(Problem)
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
Systematic discrimination
 
 
When a certain unfair die is rolled, an even number is <math>3</math> times as likely to appear as an odd number. The die is rolled twice. What is the probability that the sum of the numbers rolled is even?
 
When a certain unfair die is rolled, an even number is <math>3</math> times as likely to appear as an odd number. The die is rolled twice. What is the probability that the sum of the numbers rolled is even?
  
Line 10: Line 9:
  
 
~Arcticturn ~Aidensharp
 
~Arcticturn ~Aidensharp
 
 
 
Reheheeeheeheheheheheheheheheheheheheheheh
 
  
 
==Video Solution by TheBeautyofMath==
 
==Video Solution by TheBeautyofMath==

Revision as of 16:41, 2 October 2022

Problem

When a certain unfair die is rolled, an even number is $3$ times as likely to appear as an odd number. The die is rolled twice. What is the probability that the sum of the numbers rolled is even?

$\textbf{(A)}\ \frac{3}{8}  \qquad\textbf{(B)}\  \frac{4}{9} \qquad\textbf{(C)}\  \frac{5}{9} \qquad\textbf{(D)}\  \frac{9}{16} \qquad\textbf{(E)}\ \frac{5}{8}$

Solution

Since an even number is $3$ times more likely to appear than an odd number, the probability of an even number appearing is $\frac{3}{4}$. Since the problem states that the sum of the two die must be even, the numbers must both be even or both be odd. We either have EE or OO, so we have \[\frac{3}{4}\cdot \frac{3}{4} + \frac{1}{4} \cdot \frac{1}{4} = \frac {1}{16} + \frac {9}{16} = \frac{10}{16} = \boxed{\textbf{(E)}\ \frac{5}{8}}.\]

~Arcticturn ~Aidensharp

Video Solution by TheBeautyofMath

https://youtu.be/ycRZHCOKTVk?t=661

~IceMatrix

Video Solution by WhyMath

https://youtu.be/oOKx2Wqp_ig ~savannahsolver

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png