Difference between revisions of "2023 AMC 8 Problems/Problem 1"
Mathfun1000 (talk | contribs) m |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24</math> | <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24</math> | ||
− | ==Solution== | + | ==Solution 1== |
By the order of operations, we have <cmath>(8 \times 4 + 2) - (8 + 4 \times 2) = (32+2) - (8+8) = 34 - 16 = \boxed{\textbf{(D)}\ 18}.</cmath> | By the order of operations, we have <cmath>(8 \times 4 + 2) - (8 + 4 \times 2) = (32+2) - (8+8) = 34 - 16 = \boxed{\textbf{(D)}\ 18}.</cmath> | ||
~apex304, TaeKim, peelybonehead, MRENTHUSIASM | ~apex304, TaeKim, peelybonehead, MRENTHUSIASM | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We can simplify the expression above in another way: <math>(8 \times 4 + 2) - (8 + 4 \times 2)=8\times4+2-8-4\times2=32+2-8-8=34-16=\boxed{\textbf{(D)}\ 18}.</math>$ | ||
+ | |||
+ | ~MathFun1000 | ||
==Video Solution by Magic Square== | ==Video Solution by Magic Square== |
Revision as of 15:16, 28 January 2023
Contents
[hide]Problem
What is the value of ?
Solution 1
By the order of operations, we have ~apex304, TaeKim, peelybonehead, MRENTHUSIASM
Solution 2
We can simplify the expression above in another way: $
~MathFun1000
Video Solution by Magic Square
https://youtu.be/-N46BeEKaCQ?t=5746
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=EcrktBc8zrM
See Also
2023 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.