Difference between revisions of "2023 AIME I Problems/Problem 4"

m (Solution 1)
m (Solution 3 (Engineer's Induction))
Line 39: Line 39:
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
  
==Solution 3 (Engineer's Induction)==
+
==(Fake) Guess (Engineer's Induction)==
  
Try smaller cases. There is clearly only one <math>m</math> that makes <math>\frac{2!}{m}</math> a square, and this is <math>m=2</math>. Here, the sum of the exponents in the prime factorization is just <math>1</math>. Furthermore, the only <math>m</math> that makes <math>\frac{3!}{m}</math> a square is <math>m = 6 = 2^13^1</math>, and the sum of the exponents is <math>2</math> here. Trying <math>\frac{4!}{m}</math> and <math>\frac{5!}{m}</math>, the sums of the exponents are <math>3</math> and <math>4</math>. Based on this, we conclude that, when we are given <math>\frac{n!}{m}</math>, the desired sum is <math>n-1</math>. The problem gives us <math>\frac{13!}{m}</math>, so the answer is <math>13-1 = \boxed{012}</math>.
+
Try smaller cases. There is clearly only one <math>m</math> that makes <math>\frac{2!}{m}</math> a square, and this is <math>m=2</math>. Here, the sum of the exponents in the prime factorization is just <math>1</math>. Furthermore, the only <math>m</math> that makes <math>\frac{3!}{m}</math> a square is <math>m = 6 = 2^13^1</math>, and the sum of the exponents is <math>2</math> here. Trying <math>\frac{4!}{m}</math> and <math>\frac{5!}{m}</math>, the sums of the exponents are <math>3</math> and <math>4</math>. Based on this, we (incorrectly!) conclude that, when we are given <math>\frac{n!}{m}</math>, the desired sum is <math>n-1</math>. The problem gives us <math>\frac{13!}{m}</math>, so the answer is <math>13-1 = \boxed{012}</math>.
  
 
-InsetIowa9
 
-InsetIowa9
 +
 +
However!
 +
 +
The induction fails starting at <math>n = 9</math> !
 +
 +
The actual answers <math>f(n) for small </math>n<math> are:
 +
 +
</math>0 1 2 3 4 5 6 7 7 7 8 11 12<math>
 +
 +
In general, </math>f(p) = f(p-1)+1<math> if p is prime, </math>n=4,6,8<math> are "lucky", and the pattern breaks down after </math>n=8$
 +
 +
-"fake"  warning by oinava
  
 
==See also==
 
==See also==

Revision as of 21:34, 10 February 2023

Problem

The sum of all positive integers $m$ such that $\frac{13!}{m}$ is a perfect square can be written as $2^a3^b5^c7^d11^e13^f,$ where $a,b,c,d,e,$ and $f$ are positive integers. Find $a+b+c+d+e+f.$

Solution 1

We first rewrite $13!$ as a prime factorization, which is $2^{10}\cdot3^5\cdot5^2\cdot7\cdot11\cdot13.$

For the fraction to be a square, it needs each prime to be an even power. This means $m$ must contain $7\cdot11\cdot13$. Also, $m$ can contain any even power of $2$ up to $2^{10}$, any odd power of $3$ up to $3^{5}$, and any even power of $5$ up to $5^{2}$. The sum of $m$ is \[(2^0+2^2+2^4+2^6+2^8+2^{10})(3^1+3^3+3^5)(5^0+5^2)(7^1)(11^1)(13^1) =\] \[1365\cdot273\cdot26\cdot7\cdot11\cdot13 = 2\cdot3^2\cdot5\cdot7^3\cdot11\cdot13^4.\] Therefore, the answer is $1+2+1+3+1+4=\boxed{012}$.

~chem1kall

Solution 2

The prime factorization of $13!$ is \[2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13.\] To get $\frac{13!}{m}$ a perfect square, we must have $m = 2^{2x} \cdot 3^{1 + 2y} \cdot 5^{2z} \cdot 7 \cdot 11 \cdot 13$, where $x \in \left\{ 0, 1, \cdots , 5 \right\}$, $y \in \left\{ 0, 1, 2 \right\}$, $z \in \left\{ 0, 1 \right\}$.

Hence, the sum of all feasible $m$ is \begin{align*} \sum_{x=0}^5 \sum_{y=0}^2 \sum_{z=0}^1 2^{2x} \cdot 3^{1 + 2y} \cdot 5^{2z} \cdot 7 \cdot 11 \cdot 13 & = \left( \sum_{x=0}^5 2^{2x} \right) \left( \sum_{y=0}^2 3^{1 + 2y} \right) \left( \sum_{z=0}^1 5^{2z} \right) 7 \cdot 11 \cdot 13 \\ & = \frac{4^6 - 1}{4-1} \cdot \frac{3 \cdot \left( 9^3 - 1 \right)}{9 - 1} \cdot \frac{25^2  - 1}{25 - 1} \cdot 7 \cdot 11 \cdot 13 \\ &  = 2 \cdot 3^2 \cdot 5 \cdot 7^3 \cdot 11 \cdot 13^4 . \end{align*}

Therefore, the answer is \begin{align*} 1 + 2 + 1 + 3 + 1 + 4 & = \boxed{012} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

(Fake) Guess (Engineer's Induction)

Try smaller cases. There is clearly only one $m$ that makes $\frac{2!}{m}$ a square, and this is $m=2$. Here, the sum of the exponents in the prime factorization is just $1$. Furthermore, the only $m$ that makes $\frac{3!}{m}$ a square is $m = 6 = 2^13^1$, and the sum of the exponents is $2$ here. Trying $\frac{4!}{m}$ and $\frac{5!}{m}$, the sums of the exponents are $3$ and $4$. Based on this, we (incorrectly!) conclude that, when we are given $\frac{n!}{m}$, the desired sum is $n-1$. The problem gives us $\frac{13!}{m}$, so the answer is $13-1 = \boxed{012}$.

-InsetIowa9

However!

The induction fails starting at $n = 9$ !

The actual answers $f(n) for small$n$are:$0 1 2 3 4 5 6 7 7 7 8 11 12$In general,$f(p) = f(p-1)+1$if p is prime,$n=4,6,8$are "lucky", and the pattern breaks down after$n=8$

-"fake" warning by oinava

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png