Difference between revisions of "2023 AMC 8 Problems/Problem 6"

Line 73: Line 73:
  
 
~savannahsolver
 
~savannahsolver
 +
 +
==Video Solution by harungurcan==
 +
https://www.youtube.com/watch?v=35BW7bsm_Cg&t=679s
  
 
==See Also==  
 
==See Also==  
 
{{AMC8 box|year=2023|num-b=5|num-a=7}}
 
{{AMC8 box|year=2023|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 04:09, 1 May 2023

Problem

The digits $2, 0, 2,$ and $3$ are placed in the expression below, one digit per box. What is the maximum possible value of the expression?

[asy] // Diagram by TheMathGuyd. I can compress this later size(5cm); real w=2.2; pair O,I,J; O=(0,0);I=(1,0);J=(0,1); path bsqb = O--I; path bsqr = I--I+J; path bsqt = I+J--J; path bsql = J--O; path lsqb = shift((1.2,0.75))*scale(0.5)*bsqb; path lsqr = shift((1.2,0.75))*scale(0.5)*bsqr; path lsqt = shift((1.2,0.75))*scale(0.5)*bsqt; path lsql = shift((1.2,0.75))*scale(0.5)*bsql; draw(bsqb,dashed); draw(bsqr,dashed); draw(bsqt,dashed); draw(bsql,dashed); draw(lsqb,dashed); draw(lsqr,dashed); draw(lsqt,dashed); draw(lsql,dashed); label(scale(3)*"$\times$",(w,1/3)); draw(shift(1.3w,0)*bsqb,dashed); draw(shift(1.3w,0)*bsqr,dashed); draw(shift(1.3w,0)*bsqt,dashed); draw(shift(1.3w,0)*bsql,dashed); draw(shift(1.3w,0)*lsqb,dashed); draw(shift(1.3w,0)*lsqr,dashed); draw(shift(1.3w,0)*lsqt,dashed); draw(shift(1.3w,0)*lsql,dashed); [/asy]

$\textbf{(A) }0 \qquad \textbf{(B) }8 \qquad \textbf{(C) }9 \qquad \textbf{(D) }16 \qquad \textbf{(E) }18$

Solution 1

First, let us consider the case where $0$ is a base: This would result in the entire expression being $0.$ Contrastingly, if $0$ is an exponent, we will get a value greater than $0.$ As $3^2\times2^0=9$ is greater than $2^3\times2^0=8$ and $2^2\times3^0=4,$ the answer is $\boxed{\textbf{(C) }9}.$

~MathFun1000

Solution 2

The maximum possible value of using the digits $2,0,2,$ and $3$: We can maximize our value by keeping the $3$ and $2$ together in one power (the biggest with the biggest and the smallest with the smallest). This shows $3^{2}\times2^{0}=9\times1=9.$ (We don't want $0^{2}$ because that is $0$.) It is going to be $\boxed{\textbf{(C)}\ 9}.$

~apex304, (SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat, stevens0209, ILoveMath31415926535 (editing))

Solution 3

Trying all $12$ distinct orderings, we see that the only possible values are $0,4,8,$ and $9,$ the greatest of which is $\boxed{\textbf{(C)}\ 9}.$

~A_MatheMagician

Solution 4

There are two 2’s and one 3. To make use of them all, use 2 and 3 as the bases and 2 and 0 as the exponents.

~spacepandamath13

(Creative Thinking) Video Solution

https://youtu.be/HW6TUhQTj0o

~Education the Study of everything

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5247

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=EcrktBc8zrM

Video Solution by Interstigation

https://youtu.be/1bA7fD7Lg54?t=331

Video Solution by WhyMath

https://youtu.be/vKdWbtXYgz4

~savannahsolver

Video Solution by harungurcan

https://www.youtube.com/watch?v=35BW7bsm_Cg&t=679s

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png