Difference between revisions of "2016 AMC 10A Problems/Problem 1"
(→Solution 3) |
(→Solution 3) |
||
Line 15: | Line 15: | ||
==Solution 3== | ==Solution 3== | ||
− | + | <math>\dfrac{11!-10!}{9!}</math> | |
consider 10 as n | consider 10 as n | ||
consider the nurmetor only | consider the nurmetor only |
Revision as of 13:40, 17 March 2023
Problem
What is the value of ?
Solution 1
We can use subtraction of fractions to get
Solution 2
Factoring out gives .
Solution 3
consider 10 as n consider the nurmetor only (n+1)!-n!=(n+1)n!+(-1)n! = n(n!)
now with the deniminator
n(n!)/(n-1)!
n(n-1)!=n!
so = n(n(n-1)!)/(n-1)! divide the (n-1)! we get n time n = n^2 = 10^2 = 100
Video Solution
~IceMatrix
~savannahsolver
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.