Difference between revisions of "2023 AMC 12A Problems/Problem 21"
m (→Solution 1) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
If <math>A</math> and <math>B</math> are vertices of a polyhedron, define the distance <math>d(A,B)</math> to be the minimum number of edges of the polyhedron one must traverse in order to connect <math>A</math> and <math>B</math>. For example, if <math>\overline{AB}</math> is an edge of the polyhedron, then <math>d(A, B) = 1</math>, but if <math>\overline{AC}</math> and <math>\overline{CB}</math> are edges and <math>\overline{AB}</math> is not an edge, then <math>d(A, B) = 2</math>. Let Q, R, and S be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that <math>d(Q, R) > d(R, S)</math>? | If <math>A</math> and <math>B</math> are vertices of a polyhedron, define the distance <math>d(A,B)</math> to be the minimum number of edges of the polyhedron one must traverse in order to connect <math>A</math> and <math>B</math>. For example, if <math>\overline{AB}</math> is an edge of the polyhedron, then <math>d(A, B) = 1</math>, but if <math>\overline{AC}</math> and <math>\overline{CB}</math> are edges and <math>\overline{AB}</math> is not an edge, then <math>d(A, B) = 2</math>. Let Q, R, and S be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that <math>d(Q, R) > d(R, S)</math>? | ||
+ | |||
+ | <math>\textbf{(A) } \frac{7}{22} \qquad \textbf{(B) } \frac{1}{3} \qquad \textbf{(C) } \frac{3}{8} \qquad \textbf{(D) } \frac{5}{12} \qquad \textbf{(E) } \frac{1}{2}</math> | ||
==Solution 1== | ==Solution 1== |
Revision as of 21:47, 9 November 2023
Problem
If and are vertices of a polyhedron, define the distance to be the minimum number of edges of the polyhedron one must traverse in order to connect and . For example, if is an edge of the polyhedron, then , but if and are edges and is not an edge, then . Let Q, R, and S be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that ?
Solution 1
First, note that a regular icosahedron has 12 vertices. So there are ways to choose 3 distinct points.
Now, the furthest distance we can get from one point to another point in a icosahedron is 3. Which gives us a range of
With some case work, we get:
Case 1:
(ways to choose R × ways to choose Q × ways to choose S)
Case 2:
(ways to choose R × ways to choose Q × ways to choose S)
Hence,
~lptoggled
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.