Difference between revisions of "1959 AHSME Problems/Problem 40"

m (category)
(diagram)
Line 6: Line 6:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
 +
point A = (0,0);
 +
point B = (5,8);
 +
point C = (16,0);
 +
point D = midpoint(A--C);
 +
point E = midpoint(B--D);
 +
point F, G;
 +
triangle ABC = triangle(A,B,C);
 +
 +
// Triangle ABC
 +
draw(ABC);
 +
dot(A);
 +
label("A",A,SW);
 +
dot(B);
 +
label("B",B,N);
 +
dot(C);
 +
label("C",C,SE);
 +
 +
// Segment BD
 +
draw(B--D);
 +
dot(D);
 +
label("D",D,S);
 +
dot(E);
 +
label("E",E,SW);
 +
 +
// Segment CF
 +
pair[] f = intersectionpoints(line(C,E),A--B);
 +
F = f[0];
 +
dot(F);
 +
label("F",F,W);
 +
draw(C--F);
 +
 +
// Segment DG
 +
pair[] g = intersectionpoints(parallel(D,line(F,C)),A--B);
 +
G = g[0];
 +
dot(G);
 +
label("G",G,W);
 +
draw(D--G);
 +
 +
// Length Label
 +
label("$5$", midpoint(B--F), NW);
 +
 +
</asy>
  
 
Draw <math>\overline{DG} \parallel \overline{FC}</math> with <math>G</math> on <math>\overline{AB}</math>. We know that <math>GF = BF = 5</math>, since <math>\triangle BFE \sim \triangle BGD</math>.
 
Draw <math>\overline{DG} \parallel \overline{FC}</math> with <math>G</math> on <math>\overline{AB}</math>. We know that <math>GF = BF = 5</math>, since <math>\triangle BFE \sim \triangle BGD</math>.

Revision as of 18:50, 21 July 2024

Problem

In $\triangle ABC$, $BD$ is a median. $CF$ intersects $BD$ at $E$ so that $\overline{BE}=\overline{ED}$. Point $F$ is on $AB$. Then, if $\overline{BF}=5$, $\overline{BA}$ equals: $\textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ \text{none of these}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (5,8); point C = (16,0); point D = midpoint(A--C); point E = midpoint(B--D); point F, G; triangle ABC = triangle(A,B,C);  // Triangle ABC draw(ABC); dot(A); label("A",A,SW); dot(B); label("B",B,N); dot(C); label("C",C,SE);  // Segment BD draw(B--D); dot(D); label("D",D,S); dot(E); label("E",E,SW);  // Segment CF pair[] f = intersectionpoints(line(C,E),A--B); F = f[0]; dot(F); label("F",F,W); draw(C--F);  // Segment DG pair[] g = intersectionpoints(parallel(D,line(F,C)),A--B); G = g[0]; dot(G); label("G",G,W); draw(D--G);  // Length Label label("$5$", midpoint(B--F), NW);  [/asy]

Draw $\overline{DG} \parallel \overline{FC}$ with $G$ on $\overline{AB}$. We know that $GF = BF = 5$, since $\triangle BFE \sim \triangle BGD$.

Likewise, since $\triangle ADG \sim \triangle ACF$, we know that $AG=5$.

Thus, $AF=AG+GF+FB=5+5+5=15$, which is answer $\fbox{\textbf{(C)}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 39
Followed by
Problem 41
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png