Difference between revisions of "2017 AMC 10A Problems/Problem 2"
m (Fixed a video link) |
(→Solution) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ 8\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 13\qquad\textbf{(E)}\ 15</math> | <math>\textbf{(A)}\ 8\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 13\qquad\textbf{(E)}\ 15</math> | ||
− | ==Solution== | + | ==Solution 1== |
<math>\$3</math> boxes give us the most popsicles/dollar, so we want to buy as many of those as possible. After buying <math>2</math>, we have <math>\$2</math> left. We cannot buy a third <math>\$3</math> box, so we opt for the <math>\$2</math> box instead (since it has a higher popsicles/dollar ratio than the <math>\$1</math> pack). We're now out of money. We bought <math>5+5+3=13</math> popsicles, so the answer is <math>\boxed{\textbf{(D) }13}</math>. | <math>\$3</math> boxes give us the most popsicles/dollar, so we want to buy as many of those as possible. After buying <math>2</math>, we have <math>\$2</math> left. We cannot buy a third <math>\$3</math> box, so we opt for the <math>\$2</math> box instead (since it has a higher popsicles/dollar ratio than the <math>\$1</math> pack). We're now out of money. We bought <math>5+5+3=13</math> popsicles, so the answer is <math>\boxed{\textbf{(D) }13}</math>. |
Latest revision as of 23:18, 19 September 2024
Problem
Pablo buys popsicles for his friends. The store sells single popsicles for each, -popsicle boxes for each, and -popsicle boxes for . What is the greatest number of popsicles that Pablo can buy with ?
Solution 1
boxes give us the most popsicles/dollar, so we want to buy as many of those as possible. After buying , we have left. We cannot buy a third box, so we opt for the box instead (since it has a higher popsicles/dollar ratio than the pack). We're now out of money. We bought popsicles, so the answer is .
Video Solution
https://youtu.be/str7kmcRMY8?feature=shared&t=64
(TheBeautyofMath)
Video Solution 2
~savannahsolver
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.