Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 14"

(Standardized answer choices)
m
Line 2: Line 2:
 
[[Image:2006 CyMO-14.PNG|250px|right]]
 
[[Image:2006 CyMO-14.PNG|250px|right]]
  
The rectangle <math>AB\Gamma \Delta</math> is a small garden divided to the rectangle <math>AZE\Delta</math> and to the square <math>ZB\Gamma E</math>, so that <math>AE=2\sqrt{5}m</math> and the shaded area of the triangle <math>\Delta BE</math> is <math>4m^2</math>. The area of the whole garden is
+
The rectangle <math>AB\Gamma \Delta</math> is a small garden divided to the rectangle <math>AZE\Delta</math> and to the square <math>ZB\Gamma E</math>, so that <math>AE=2\sqrt{5}\ \text{m}</math> and the shaded area of the triangle <math>\Delta BE</math> is <math>4\ \text{m}^2</math>. The area of the whole garden is
  
 
<math>\mathrm{(A)}\ 24\ \text{m}^2\qquad\mathrm{(B)}\ 20\ \text{m}^2\qquad\mathrm{(C)}\ 16\ \text{m}^2\qquad\mathrm{(D)}\ 32\ \text{m}^2\qquad\mathrm{(E)}\ 10\sqrt{5}\ \text{m}^2</math>
 
<math>\mathrm{(A)}\ 24\ \text{m}^2\qquad\mathrm{(B)}\ 20\ \text{m}^2\qquad\mathrm{(C)}\ 16\ \text{m}^2\qquad\mathrm{(D)}\ 32\ \text{m}^2\qquad\mathrm{(E)}\ 10\sqrt{5}\ \text{m}^2</math>

Revision as of 09:31, 27 April 2008

Problem

2006 CyMO-14.PNG

The rectangle $AB\Gamma \Delta$ is a small garden divided to the rectangle $AZE\Delta$ and to the square $ZB\Gamma E$, so that $AE=2\sqrt{5}\ \text{m}$ and the shaded area of the triangle $\Delta BE$ is $4\ \text{m}^2$. The area of the whole garden is

$\mathrm{(A)}\ 24\ \text{m}^2\qquad\mathrm{(B)}\ 20\ \text{m}^2\qquad\mathrm{(C)}\ 16\ \text{m}^2\qquad\mathrm{(D)}\ 32\ \text{m}^2\qquad\mathrm{(E)}\ 10\sqrt{5}\ \text{m}^2$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30