Difference between revisions of "2005 AMC 12B Problems/Problem 12"
(solution) |
m (→Solution) |
||
Line 9: | Line 9: | ||
<cmath>x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,</cmath> | <cmath>x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,</cmath> | ||
− | so <math>p = -(a+ | + | so <math>p = -(a+b)</math> and <math>m = ab</math>. Also, <math>x^2 + mx + n = 0</math> has roots <math>2a</math> and <math>2b</math>, so |
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath> | <cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath> | ||
− | and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+ | + | and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = 8 \Longrightarrow \textbf{(D)}</math>. |
− | Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>. See [[Vieta's formulas]]. | + | Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>. See [[Vieta's formulas]]. |
== See also == | == See also == |
Revision as of 18:46, 27 August 2008
Problem
The quadratic equation has roots twice those of , and none of and is zero. What is the value of ?
Solution
Let have roots and . Then
so and . Also, has roots and , so
and and . Thus .
Indeed, consider the quadratics . See Vieta's formulas.
See also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |