Difference between revisions of "2009 AMC 12A Problems/Problem 21"

(Solution)
m (Solutions)
Line 20: Line 20:
  
 
So the answer is <math>4 + 2 + 2 = 8\ \mathbf{(C)}</math>.
 
So the answer is <math>4 + 2 + 2 = 8\ \mathbf{(C)}</math>.
=== Solution 2 ===
 
  
 
== See also ==
 
== See also ==

Revision as of 13:24, 2 March 2009

Problem

Let $p(x) = x^3 + ax^2 + bx + c$, where $a$, $b$, and $c$ are complex numbers. Suppose that

\[p(2009 + 9002\pi i) = p(2009) = p(9002) = 0\]

What is the number of nonreal zeros of $x^{12} + ax^8 + bx^4 + c$?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$

Solutions

Solution 1

From the three zeroes, we have $p(x) = (x - (2009 + 9002\pi i))(x - 2009)(x - 9002)$.

Then $p(x^4) = (x^4 - (2009 + 9002\pi i))(x^4 - 2009)(x^4 - 9002)=x^{12}+ax^8+bx^4+c$.

Let's do each factor case by case:

  • $x^4 - (2009 + 9002\pi i) = 0$: Clearly, all the fourth roots are going to be complex.
  • $x^4 - 2009 = 0$: The real roots are $\pm \sqrt [4]{2009}$, and there are two complex roots.
  • $x^4 - 9002 = 0$: The real roots are $\pm \sqrt [4]{9002}$, and there are two complex roots.

So the answer is $4 + 2 + 2 = 8\ \mathbf{(C)}$.

See also

2009 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions