Difference between revisions of "1991 AJHSME Problems"
5849206328x (talk | contribs) (Created page with '==Problem 1== Solution == Problem 2 == Solution == Problem 3 == [[1991 AJHSME Problems/Problem 3|Soluti…') |
5849206328x (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem 1== | ==Problem 1== | ||
+ | |||
+ | <math>1,000,000,000,000-777,777,777,777=</math> | ||
+ | |||
+ | <math>\text{(A)}\ 222,222,222,222 \qquad \text{(B)}\ 222,222,222,223 \qquad \text{(C)}\ 233,333,333,333 \qquad \text{(D)}\ 322,222,222,223 \qquad \text{(E)}\ 333,333,333,333</math> | ||
[[1991 AJHSME Problems/Problem 1|Solution]] | [[1991 AJHSME Problems/Problem 1|Solution]] | ||
== Problem 2 == | == Problem 2 == | ||
+ | |||
+ | <math>\frac{16+8}{4-2}=</math> | ||
+ | |||
+ | <math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math> | ||
[[1991 AJHSME Problems/Problem 2|Solution]] | [[1991 AJHSME Problems/Problem 2|Solution]] | ||
== Problem 3 == | == Problem 3 == | ||
+ | |||
+ | Two hundred thousand times two hundred thousand equals | ||
+ | |||
+ | <math>\text{(A)}\ \text{four hundred thousand} \qquad \text{(B)}\ \text{four million} \qquad \text{(C)}\ \text{forty thousand} \qquad \text{(D)}\ \text{four hundred million} \qquad \text{(E)}\ \text{forty billion}</math> | ||
[[1991 AJHSME Problems/Problem 3|Solution]] | [[1991 AJHSME Problems/Problem 3|Solution]] | ||
== Problem 4 == | == Problem 4 == | ||
+ | |||
+ | If <math>991+993+995+997+999=5000-N</math>, then <math>N=</math> | ||
+ | |||
+ | <math>\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25</math> | ||
[[1991 AJHSME Problems/Problem 4|Solution]] | [[1991 AJHSME Problems/Problem 4|Solution]] | ||
== Problem 5 == | == Problem 5 == | ||
+ | |||
+ | A "domino" is made up of two small squares: | ||
+ | <asy> | ||
+ | unitsize(12); | ||
+ | fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); | ||
+ | draw((1,1)--(2,1)--(2,0)--(1,0)); | ||
+ | </asy> | ||
+ | Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes? | ||
+ | |||
+ | <asy> | ||
+ | unitsize(12); | ||
+ | fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); | ||
+ | fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); | ||
+ | fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black); | ||
+ | draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle); | ||
+ | fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black); | ||
+ | fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black); | ||
+ | fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black); | ||
+ | fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black); | ||
+ | draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black); | ||
+ | fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black); | ||
+ | fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black); | ||
+ | fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black); | ||
+ | fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black); | ||
+ | fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black); | ||
+ | fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black); | ||
+ | fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black); | ||
+ | fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black); | ||
+ | fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black); | ||
+ | draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black); | ||
+ | fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black); | ||
+ | fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black); | ||
+ | fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black); | ||
+ | fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black); | ||
+ | </asy> | ||
+ | |||
+ | <math>\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3</math> | ||
[[1991 AJHSME Problems/Problem 5|Solution]] | [[1991 AJHSME Problems/Problem 5|Solution]] | ||
== Problem 6 == | == Problem 6 == | ||
+ | |||
+ | Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.) | ||
+ | <cmath>\begin{tabular}[t]{ccccc} | ||
+ | 10 & 6 & 4 & 3 & 2 \\ | ||
+ | 11 & 7 & 14 & 10 & 8 \\ | ||
+ | 8 & 3 & 4 & 5 & 9 \\ | ||
+ | 13 & 4 & 15 & 12 & 1 \\ | ||
+ | 8 & 2 & 5 & 9 & 3 | ||
+ | \end{tabular}</cmath> | ||
+ | |||
+ | <math>\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15</math> | ||
[[1991 AJHSME Problems/Problem 6|Solution]] | [[1991 AJHSME Problems/Problem 6|Solution]] | ||
== Problem 7 == | == Problem 7 == | ||
+ | |||
+ | The value of <math>\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}</math> is closest to | ||
+ | |||
+ | <math>\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000</math> | ||
[[1991 AJHSME Problems/Problem 7|Solution]] | [[1991 AJHSME Problems/Problem 7|Solution]] | ||
== Problem 8 == | == Problem 8 == | ||
+ | |||
+ | What is the largest quotient that can be formed using two numbers chosen from the set <math>\{ -24, -3, -2, 1, 2, 8 \}</math>? | ||
+ | |||
+ | <math>\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24</math> | ||
[[1991 AJHSME Problems/Problem 8|Solution]] | [[1991 AJHSME Problems/Problem 8|Solution]] | ||
== Problem 9 == | == Problem 9 == | ||
+ | |||
+ | How many whole numbers from <math>1</math> through <math>46</math> are divisible by either <math>3</math> or <math>5</math> or both? | ||
+ | |||
+ | <math>\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27</math> | ||
[[1991 AJHSME Problems/Problem 9|Solution]] | [[1991 AJHSME Problems/Problem 9|Solution]] | ||
== Problem 10 == | == Problem 10 == | ||
+ | |||
+ | The area in square units of the region enclosed by parallelogram <math>ABCD</math> is | ||
+ | |||
+ | <asy> | ||
+ | unitsize(24); | ||
+ | pair A,B,C,D; | ||
+ | A=(-1,0); B=(0,2); C=(4,2); D=(3,0); | ||
+ | draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); | ||
+ | draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); | ||
+ | dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); | ||
+ | label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); | ||
+ | label("$A$",A,SW); label("$B$",B,NW); | ||
+ | </asy> | ||
+ | |||
+ | <math>\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18</math> | ||
[[1991 AJHSME Problems/Problem 10|Solution]] | [[1991 AJHSME Problems/Problem 10|Solution]] |
Revision as of 16:18, 15 July 2009
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
Problem 2
Problem 3
Two hundred thousand times two hundred thousand equals
Problem 4
If , then
Problem 5
A "domino" is made up of two small squares: Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?
Problem 6
Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.)
Problem 7
The value of is closest to
Problem 8
What is the largest quotient that can be formed using two numbers chosen from the set ?
Problem 9
How many whole numbers from through are divisible by either or or both?
Problem 10
The area in square units of the region enclosed by parallelogram is
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
See also
1991 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by 1990 AJHSME |
Followed by 1992 AJHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |