Difference between revisions of "1991 AJHSME Problems"

Line 131: Line 131:
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
 +
There are several sets of three different numbers whose sum is <math>15</math> which can be chosen from <math>\{ 1,2,3,4,5,6,7,8,9 \} </math>.  How many of these sets contain a <math>5</math>?
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7</math>
  
 
[[1991 AJHSME Problems/Problem 11|Solution]]
 
[[1991 AJHSME Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
 +
If <math>\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}</math>, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992</math>
  
 
[[1991 AJHSME Problems/Problem 12|Solution]]
 
[[1991 AJHSME Problems/Problem 12|Solution]]
  
 
== Problem 13 ==
 
== Problem 13 ==
 +
 +
How many zeros are at the end of the product
 +
<cmath>25\times 25\times 25\times 25\times 25\times 25\times 25\times 8\times 8\times 8?</cmath>
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 12</math>
  
 
[[1991 AJHSME Problems/Problem 13|Solution]]
 
[[1991 AJHSME Problems/Problem 13|Solution]]
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
 +
Several students are competing in a series of three races.  A student earns <math>5</math> points for winning a race, <math>3</math> points for finishing second and <math>1</math> point for finishing third.  There are no ties.  What is the smallest number of points that a student must earn in the three races to be guaranteed of earning more points than any other student?
 +
 +
<math>\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 11 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15</math>
  
 
[[1991 AJHSME Problems/Problem 14|Solution]]
 
[[1991 AJHSME Problems/Problem 14|Solution]]
Line 155: Line 172:
  
 
== Problem 17 ==
 
== Problem 17 ==
 +
 +
An auditorium with <math>20</math> rows of seats has <math>10</math> seats in the first row.  Each successive row has one more seat than the previous row.  If students taking an exam are permitted to sit in any row, but not next to another student in that row, then the maximum number of students that can be seated for an exam is
 +
 +
<math>\text{(A)}\ 150 \qquad \text{(B)}\ 180 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 460</math>
  
 
[[1991 AJHSME Problems/Problem 17|Solution]]
 
[[1991 AJHSME Problems/Problem 17|Solution]]
Line 163: Line 184:
  
 
== Problem 19 ==
 
== Problem 19 ==
 +
 +
The average (arithmetic mean) of <math>10</math> different positive whole numbers is <math>10</math>.  The largest possible value of any of these numbers is
 +
 +
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 50 \qquad \text{(C)}\ 55 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 91</math>
  
 
[[1991 AJHSME Problems/Problem 19|Solution]]
 
[[1991 AJHSME Problems/Problem 19|Solution]]
Line 171: Line 196:
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
 +
For every <math>3^\circ </math> rise in temperature, the volume of a certain gas expands by <math>4</math> cubic centimeters.  If the volume of the gas is <math>24</math> cubic centimeters when the temperature is <math>32^\circ </math>, what was the volume of the gas in cubic centimeters when the temperature was <math>20^\circ </math>?
 +
 +
<math>\text{(A)}\ 8 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 40</math>
  
 
[[1991 AJHSME Problems/Problem 21|Solution]]
 
[[1991 AJHSME Problems/Problem 21|Solution]]
Line 179: Line 208:
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
 +
The Pythagoras High School band has <math>100</math> female and <math>80</math> male members.  The Pythagoras High School orchestra has <math>80</math> female and <math>100</math> male members.  There are <math>60</math> females who are members in both band and orchestra.  Altogether, there are <math>230</math> students who are in either band or orchestra or both.  The number of males in the band who are NOT in the orchestra is
 +
 +
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 50 \qquad \text{(E)}\ 70</math>
  
 
[[1991 AJHSME Problems/Problem 23|Solution]]
 
[[1991 AJHSME Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
 +
 +
A cube of edge <math>3</math> cm is cut into <math>N</math> smaller cubes, not all the same size.  If the edge of each of the smaller cubes is a whole number of centimeters, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
[[1991 AJHSME Problems/Problem 24|Solution]]
 
[[1991 AJHSME Problems/Problem 24|Solution]]

Revision as of 14:52, 16 July 2009

Problem 1

$1,000,000,000,000-777,777,777,777=$

$\text{(A)}\ 222,222,222,222 \qquad \text{(B)}\ 222,222,222,223 \qquad \text{(C)}\ 233,333,333,333 \qquad \text{(D)}\ 322,222,222,223 \qquad \text{(E)}\ 333,333,333,333$

Solution

Problem 2

$\frac{16+8}{4-2}=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 3

Two hundred thousand times two hundred thousand equals

$\text{(A)}\ \text{four hundred thousand} \qquad \text{(B)}\ \text{four million} \qquad \text{(C)}\ \text{forty thousand} \qquad \text{(D)}\ \text{four hundred million} \qquad \text{(E)}\ \text{forty billion}$

Solution

Problem 4

If $991+993+995+997+999=5000-N$, then $N=$

$\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25$

Solution

Problem 5

A "domino" is made up of two small squares: [asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);  draw((1,1)--(2,1)--(2,0)--(1,0)); [/asy] Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?

[asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black); draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black); fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black); fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black); fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black); draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black); fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black); fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black); fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black); fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black); fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black); fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black); fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black); fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black); fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black); draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black); fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black); fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black); fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black); fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black); [/asy]

$\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3$

Solution

Problem 6

Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.) \[\begin{tabular}[t]{ccccc} 10 & 6 & 4 & 3 & 2 \\ 11 & 7 & 14 & 10 & 8 \\ 8 & 3 & 4 & 5 & 9 \\ 13 & 4 & 15 & 12 & 1 \\ 8 & 2 & 5 & 9 & 3 \end{tabular}\]

$\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15$

Solution

Problem 7

The value of $\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}$ is closest to

$\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000$

Solution

Problem 8

What is the largest quotient that can be formed using two numbers chosen from the set $\{ -24, -3, -2, 1, 2, 8 \}$?

$\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24$

Solution

Problem 9

How many whole numbers from $1$ through $46$ are divisible by either $3$ or $5$ or both?

$\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27$

Solution

Problem 10

The area in square units of the region enclosed by parallelogram $ABCD$ is

[asy] unitsize(24); pair A,B,C,D; A=(-1,0); B=(0,2); C=(4,2); D=(3,0);  draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); label("$A$",A,SW); label("$B$",B,NW); [/asy]

$\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

Solution

Problem 11

There are several sets of three different numbers whose sum is $15$ which can be chosen from $\{ 1,2,3,4,5,6,7,8,9 \}$. How many of these sets contain a $5$?

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7$

Solution

Problem 12

If $\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}$, then $N=$

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992$

Solution

Problem 13

How many zeros are at the end of the product \[25\times 25\times 25\times 25\times 25\times 25\times 25\times 8\times 8\times 8?\]

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 12$

Solution

Problem 14

Several students are competing in a series of three races. A student earns $5$ points for winning a race, $3$ points for finishing second and $1$ point for finishing third. There are no ties. What is the smallest number of points that a student must earn in the three races to be guaranteed of earning more points than any other student?

$\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 11 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15$

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

An auditorium with $20$ rows of seats has $10$ seats in the first row. Each successive row has one more seat than the previous row. If students taking an exam are permitted to sit in any row, but not next to another student in that row, then the maximum number of students that can be seated for an exam is

$\text{(A)}\ 150 \qquad \text{(B)}\ 180 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 460$

Solution

Problem 18

Solution

Problem 19

The average (arithmetic mean) of $10$ different positive whole numbers is $10$. The largest possible value of any of these numbers is

$\text{(A)}\ 10 \qquad \text{(B)}\ 50 \qquad \text{(C)}\ 55 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 91$

Solution

Problem 20

Solution

Problem 21

For every $3^\circ$ rise in temperature, the volume of a certain gas expands by $4$ cubic centimeters. If the volume of the gas is $24$ cubic centimeters when the temperature is $32^\circ$, what was the volume of the gas in cubic centimeters when the temperature was $20^\circ$?

$\text{(A)}\ 8 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 40$

Solution

Problem 22

Solution

Problem 23

The Pythagoras High School band has $100$ female and $80$ male members. The Pythagoras High School orchestra has $80$ female and $100$ male members. There are $60$ females who are members in both band and orchestra. Altogether, there are $230$ students who are in either band or orchestra or both. The number of males in the band who are NOT in the orchestra is

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 50 \qquad \text{(E)}\ 70$

Solution

Problem 24

A cube of edge $3$ cm is cut into $N$ smaller cubes, not all the same size. If the edge of each of the smaller cubes is a whole number of centimeters, then $N=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 25

Solution

See also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1990 AJHSME
Followed by
1992 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions