Difference between revisions of "2009 AIME I Problems/Problem 5"
(→Solution) |
m (→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | + | <center><asy> | |
+ | import markers; | ||
+ | defaultpen(fontsize(8)); | ||
+ | size(300); | ||
+ | pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; | ||
+ | C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; | ||
+ | K = midpoint(A--C); | ||
+ | L = (3*B+2*A)/5; | ||
+ | P = extension(B,K,C,L); | ||
+ | M = 2*K-P; | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(C--L);draw(B--M--A); | ||
+ | markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); | ||
+ | markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); | ||
+ | dot(A^^B^^C^^K^^L^^M^^P); | ||
+ | label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); | ||
+ | label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); | ||
+ | label("$P$",P,(1,1)); | ||
+ | label("$180$",(A+M)/2,(-1,0));label("$180$",(P+C)/2,(-1,0));label("$225$",(A+K)/2,(0,2));label("$225$",(K+C)/2,(0,2)); | ||
+ | label("$72$",(L+P)/2,(-1,0));label("$300$",(B+C)/2,(1,1)); | ||
+ | </asy></center> | ||
− | Since <math>K</math> is the midpoint of <math>\overline{PM} | + | Since <math>K</math> is the midpoint of <math>\overline{PM}</math> and <math>\overline{AC}</math>, quadrilateral <math>AMCP</math> is a parallelogram, which implies <math>AM||LP</math> and <math>\bigtriangleup{AMB}</math> is similar to <math>\bigtriangleup{LPB}</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Thus, | Thus, |
Revision as of 16:22, 7 August 2010
Problem
Triangle has and . Points and are located on and respectively so that , and is the angle bisector of angle . Let be the point of intersection of and , and let be the point on line for which is the midpoint of . If , find .
Solution
Since is the midpoint of and , quadrilateral is a parallelogram, which implies and is similar to
Thus,
Now lets apply the angle bisector theorem.
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |