Difference between revisions of "2010 AIME I Problems/Problem 3"
m (Semi-automated contest formatting - script by azjps) |
(credit to RminusQ) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Suppose that <math>y = \frac34x</math> and <math>x^y = y^x</math>. The quantity <math>x + y</math> can be expressed as a rational number <math>\frac {r}{s}</math>, where <math>r</math> and <math>s</math> are relatively prime positive integers. Find <math>r + s</math>. | ||
+ | |||
+ | == Solution == | ||
+ | We solve in general using <math>c</math> instead of <math>3/4</math>. Substituting <math>y = cx</math>, we have: | ||
+ | |||
+ | <center><cmath>x^{cx} = (cx)^x \Longrightarrow (x^x)^c = c^x\cdot x^x</cmath></center> | ||
+ | |||
+ | Dividing by <math>x^x</math>, we get <math>(x^x)^{c - 1} = c^x</math>. | ||
+ | |||
+ | Taking the <math>x</math>th root, <math>x^{c - 1} = c</math>, or <math>x = c^{1/(c - 1)}</math>. | ||
+ | |||
+ | In the case <math>c = \frac34</math>, <math>x = \Bigg(\frac34\Bigg)^{ - 4} = \frac43^4 = \frac {256}{81}</math>, <math>y = \frac {64}{27}</math>, <math>x + y = \frac {256 + 192}{81} = \frac {448}{81}</math>, yielding an answer of <math>448 + 81 = \boxed{529}</math>. | ||
== See also == | == See also == |
Revision as of 12:19, 17 March 2010
Problem
Suppose that and . The quantity can be expressed as a rational number , where and are relatively prime positive integers. Find .
Solution
We solve in general using instead of . Substituting , we have:
Dividing by , we get .
Taking the th root, , or .
In the case , , , , yielding an answer of .
See also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |