Difference between revisions of "2010 AMC 12B Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | We have either <math>{i^{x}=(1+i)^{y}\ | + | We have either <math>i^{x}=(1+i)^{y}\neq z</math>, <math>i^{x}=z\neq(1+i)^{y}</math>, or <math>(1+i)^{y}=z\neq i^x</math>. |
+ | |||
+ | For <math>i^{x}=(1+i)^{y}</math>, this only occurs at <math>1</math>. <math>(1+i)^{y}=1</math> has only one solution, <math>i^{x}=1</math> has five solutions between zero and nineteen, and <math>z\neq 1</math> has nineteen integer solutions between zero and nineteen. So for <math>i^{x}=(1+i)^{y}\neq z</math>, we have <math>5\times 1\times 19=95</math> ordered pairs. | ||
+ | |||
+ | For <math>i^{x}=z\neq(1+i)^{y}</math>, again this only occurs at <math>1</math>. <math>(1+i)^{y}\neq 1</math> has nineteen solutions, <math>i^{x}=1</math> has five solutions, and <math>z=1</math> has one solution, so again we have <math>5\times 1\times 19=95</math> ordered pairs. | ||
+ | |||
+ | For <math>(1+i)^{y}=z\neq i^x</math>, this occurs at <math>1</math> and <math>16</math>. <math>(1+i)^{y}=1</math> and <math>z=1</math> both have one solution while <math>i^{x}\neq 1</math> has fifteen solutions. <math>(1+i)^{y}=16</math> and <math>z=16</math> both have one solution while <math>i^{x}\neq 16</math> has twenty solutions. So we have <math>15\times 1\times 1+20\times 1\times 1=35</math> ordered pairs. | ||
+ | |||
+ | In total we have <math>{95+95+35=225}</math> ordered pairs <math>\Rightarrow \boxed{D}</math> | ||
== See also == | == See also == | ||
{{AMC12 box|year=2010|num-b=12|num-a=14|ab=B}} | {{AMC12 box|year=2010|num-b=12|num-a=14|ab=B}} |
Revision as of 14:48, 7 November 2010
Problem 15
For how many ordered triples of nonnegative integers less than are there exactly two distinct elements in the set , where ?
Solution
We have either , , or .
For , this only occurs at . has only one solution, has five solutions between zero and nineteen, and has nineteen integer solutions between zero and nineteen. So for , we have ordered pairs.
For , again this only occurs at . has nineteen solutions, has five solutions, and has one solution, so again we have ordered pairs.
For , this occurs at and . and both have one solution while has fifteen solutions. and both have one solution while has twenty solutions. So we have ordered pairs.
In total we have ordered pairs
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |