Difference between revisions of "2010 AMC 12B Problems/Problem 3"

m (See also)
m (Problem 3)
Line 1: Line 1:
 
== Problem 3 ==
 
== Problem 3 ==
A ticket to a school play cost <math>x</math> dollars, where <math>x</math> is a whole number. A group of 9<sup>th</sup> graders buys tickets costing a total of &#36;<math>48</math>, and a group of 10<sup>th</sup> graders buys tickets costing a total of &#36;<math>64</math>. How many values for <math>x</math> are possible?
+
A ticket to a school play cost <math>x</math> dollars, where <math>x</math> is a whole number. A group of 9<sub>th</sub> graders buys tickets costing a total of &#36;<math>48</math>, and a group of 10<sub>th</sub> graders buys tickets costing a total of &#36;<math>64</math>. How many values for <math>x</math> are possible?
  
 
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math>
 
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math>

Revision as of 16:31, 5 June 2011

Problem 3

A ticket to a school play cost $x$ dollars, where $x$ is a whole number. A group of 9th graders buys tickets costing a total of $$48$, and a group of 10th graders buys tickets costing a total of $$64$. How many values for $x$ are possible?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

Solution

We find the greatest common factor of $48$ and $64$ to be $16$. The number of factors of $16$ is $5$ which is the answer $(E)$.

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions