Difference between revisions of "2010 AIME I Problems/Problem 5"
(→Solution) |
m |
||
Line 1: | Line 1: | ||
+ | __TOC__ | ||
== Problem == | == Problem == | ||
Positive integers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> satisfy <math>a > b > c > d</math>, <math>a + b + c + d = 2010</math>, and <math>a^2 - b^2 + c^2 - d^2 = 2010</math>. Find the number of possible values of <math>a</math>. | Positive integers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> satisfy <math>a > b > c > d</math>, <math>a + b + c + d = 2010</math>, and <math>a^2 - b^2 + c^2 - d^2 = 2010</math>. Find the number of possible values of <math>a</math>. | ||
− | |||
==Solution== | ==Solution== | ||
Line 11: | Line 11: | ||
Since <math>a+b</math> must be greater than <math>1005</math>, it follows that the only possible value for <math>a-b</math> is <math>1</math> (otherwise the quantity <math>a^2 - b^2</math> would be greater than <math>2010</math>). Therefore the only possible ordered pairs for <math>(a,b)</math> are <math>(504, 503)</math>, <math>(505, 504)</math>, ... , <math>(1004, 1003)</math>, so <math>a</math> has <math>\boxed{501}</math> possible values. | Since <math>a+b</math> must be greater than <math>1005</math>, it follows that the only possible value for <math>a-b</math> is <math>1</math> (otherwise the quantity <math>a^2 - b^2</math> would be greater than <math>2010</math>). Therefore the only possible ordered pairs for <math>(a,b)</math> are <math>(504, 503)</math>, <math>(505, 504)</math>, ... , <math>(1004, 1003)</math>, so <math>a</math> has <math>\boxed{501}</math> possible values. | ||
− | == See | + | == See Also == |
{{AIME box|year=2010|num-b=4|num-a=6|n=I}} | {{AIME box|year=2010|num-b=4|num-a=6|n=I}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] |
Revision as of 15:54, 12 April 2012
Problem
Positive integers , , , and satisfy , , and . Find the number of possible values of .
Solution
Solution 1
Using the difference of squares, , where equality must hold so and . Then we see is maximal and is minimal, so the answer is .
Solution 2
Since must be greater than , it follows that the only possible value for is (otherwise the quantity would be greater than ). Therefore the only possible ordered pairs for are , , ... , , so has possible values.
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |