Difference between revisions of "2001 AMC 8 Problems/Problem 2"
(solution to 2001 AMC 8 Problem 2) |
(added 'see also') |
||
Line 1: | Line 1: | ||
Let the numbers be <math> x </math> and <math> y </math>. Then we have <math> x+y=11 </math> and <math> xy=24 </math>. Solving for <math> x </math> in the first equation yields <math> x=11-y </math>, and substituting this into the second equation gives <math> (11-y)(y)=24 </math>. Simplifying this gives <math> -y^2+11y=24 </math>, or <math> y^2-11y+24=0 </math>. This factors as <math> (y-3)(y-8)=0 </math>, so <math> y=3 </math> or <math> y=8 </math>, and the corresponding <math> x </math> values are <math> x=8 </math> and <math> x=3 </math>. These are essentially the same answer: one number is <math> 3 </math> and one number is <math> 8 </math>, so the largest number is <math> 8, \boxed{\text{D}} </math>. | Let the numbers be <math> x </math> and <math> y </math>. Then we have <math> x+y=11 </math> and <math> xy=24 </math>. Solving for <math> x </math> in the first equation yields <math> x=11-y </math>, and substituting this into the second equation gives <math> (11-y)(y)=24 </math>. Simplifying this gives <math> -y^2+11y=24 </math>, or <math> y^2-11y+24=0 </math>. This factors as <math> (y-3)(y-8)=0 </math>, so <math> y=3 </math> or <math> y=8 </math>, and the corresponding <math> x </math> values are <math> x=8 </math> and <math> x=3 </math>. These are essentially the same answer: one number is <math> 3 </math> and one number is <math> 8 </math>, so the largest number is <math> 8, \boxed{\text{D}} </math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC8 box|year=2001|num-b=1|num-a=3}} |
Revision as of 17:17, 19 May 2011
Let the numbers be and . Then we have and . Solving for in the first equation yields , and substituting this into the second equation gives . Simplifying this gives , or . This factors as , so or , and the corresponding values are and . These are essentially the same answer: one number is and one number is , so the largest number is .
See Also
2001 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |