Difference between revisions of "2011 AMC 10B Problems/Problem 21"

m
Line 48: Line 48:
  
 
{{AMC10 box|year=2011|ab=B|num-b=20|num-a=22}}
 
{{AMC10 box|year=2011|ab=B|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 12:12, 4 July 2013

Problem

Brian writes down four integers $w > x > y > z$ whose sum is $44$. The pairwise positive differences of these numbers are $1, 3, 4, 5, 6,$ and $9$. What is the sum of the possible values for $w$?

$\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 48 \qquad\textbf{(D)}\ 62 \qquad\textbf{(E)}\ 93$

Solution

The largest difference, $9,$ must be between $w$ and $z.$

The smallest difference, $1,$ must be directly between two integers. This also means the differences directly between the other two should add up to $8.$ The only remaining differences that would make this possible are $3$ and $5.$ However, those two differences can't be right next to each other because they would make a difference of $8.$ This means $1$ must be the difference between $y$ and $x.$ We can express the possible configurations as the lines.


[asy] unitsize(14mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  pair Z1=(0,1), Y1=(1,1), X1=(2,1), W1=(3,1); pair Z4=(4,1), Y4=(5,1), X4=(6,1), W4=(7,1);  draw(Z1--W1); draw(Z4--W4);  pair[] ps={W1,W4,X1,X4,Y1,Y4,Z1,Z4}; dot(ps); label("$z$",Z1,N); label("$y$",Y1,N); label("$x$",X1,N); label("$w$",W1,N); label("$z$",Z4,N); label("$y$",Y4,N); label("$x$",X4,N); label("$w$",W4,N);  label("$1$",(X1--Y1),N); label("$1$",(X4--Y4),N); label("$3$",(Y1--Z1),N); label("$3$",(W4--X4),N); label("$5$",(X1--W1),N); label("$5$",(Y4--Z4),N);  [/asy]

If we look at the first number line, you can express $x$ as $w-5,$ $y$ as $w-6,$ and $z$ as $w-9.$ Since the sum of all these integers equal $44$, \begin{align*} w+w-5+w-6+w-9&=44\\ 4w&=64\\ w&=16 \end{align*} You can do something similar to this with the second number line to find the other possible value of $w.$ \begin{align*} w+w-3+w-4+w-9&=44\\ 4w&=60\\ w&=15 \end{align*} The sum of the possible values of $w$ is $16+15 = \boxed{\textbf{(B) }31}$

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png