Difference between revisions of "1996 AHSME Problems/Problem 17"
Talkinaway (talk | contribs) (Created page with "==See also== {{AHSME box|year=1996|num-b=16|num-a=18}}") |
Talkinaway (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | In rectangle <math>ABCD</math>, angle <math>C</math> is trisected by <math>\overline{CF}</math> and <math>\overline{CE}</math>, where <math>E</math> is on <math>\overline{AB}</math>, <math>F</math> is on <math>\overline{AD}</math>, <math>BE=6</math> and <math>AF=2</math>. Which of the following is closest to the area of the rectangle <math>ABCD</math>? | ||
+ | <asy> | ||
+ | pair A=origin, B=(10,0), C=(10,7), D=(0,7), E=(5,0), F=(0,2); | ||
+ | draw(A--B--C--D--cycle, linewidth(0.8)); | ||
+ | draw(E--C--F); | ||
+ | dot(A^^B^^C^^D^^E^^F); | ||
+ | label("$A$", A, dir((5, 3.5)--A)); | ||
+ | label("$B$", B, dir((5, 3.5)--B)); | ||
+ | label("$C$", C, dir((5, 3.5)--C)); | ||
+ | label("$D$", D, dir((5, 3.5)--D)); | ||
+ | label("$E$", E, dir((5, 3.5)--E)); | ||
+ | label("$F$", F, dir((5, 3.5)--F)); | ||
+ | label("$2$", (0,1), dir(0)); | ||
+ | label("$6$", (7.5,0), N);</asy> | ||
+ | <math> \text{(A)}\ 110\qquad\text{(B)}\ 120\qquad\text{(C)}\ 130\qquad\text{(D)}\ 140\qquad\text{(E)}\ 150 </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Since <math>\angle C = 90^\circ</math>, each of the three smaller angles is <math>30^\circ</math>, and <math>\triangle BEC</math> and <math>\triangle CDF</math> are both <math>30-60-90</math> triangles. | ||
+ | |||
+ | <asy> | ||
+ | pair A=origin, B=(10,0), C=(10,7), D=(0,7), E=(5,0), F=(0,2); | ||
+ | draw(A--B--C--D--cycle, linewidth(0.8)); | ||
+ | draw(E--C--F); | ||
+ | dot(A^^B^^C^^D^^E^^F); | ||
+ | label("$A$", A, dir((5, 3.5)--A)); | ||
+ | label("$B$", B, dir((5, 3.5)--B)); | ||
+ | label("$C$", C, dir((5, 3.5)--C)); | ||
+ | label("$D$", D, dir((5, 3.5)--D)); | ||
+ | label("$E$", E, dir((5, 3.5)--E)); | ||
+ | label("$F$", F, dir((5, 3.5)--F)); | ||
+ | label("$2$", (0,1), W); | ||
+ | label("$x$", (9,3.5), E); | ||
+ | label("$x-2$", (.2,5), W); | ||
+ | label("$y$", (5,7), N); | ||
+ | label("$6$", (7.5,0), S);</asy> | ||
+ | |||
+ | Defining the variables as illustrated above, we have <math>x = 6\sqrt{3}</math> from <math>\triangle BEC</math> | ||
+ | |||
+ | Then <math>x-2 = 6\sqrt{3} - 2</math>, and <math>y = \sqrt{3} (6 \sqrt{3} - 2) = 18 - 2\sqrt{3}</math>. | ||
+ | |||
+ | The area of the square is thus <math>xy = 6\sqrt{3}(18 - 2\sqrt{3}) = 108\sqrt{3} - 36</math>. | ||
+ | |||
+ | Using the approximation <math>\sqrt{3} \approx 1.7</math>, we get an area of just under <math>147.6</math>, which is closest to answer <math>\boxed{D}</math>. (The actual area is actually greater, since <math>\sqrt{3} > 1.7</math>). | ||
+ | |||
==See also== | ==See also== | ||
{{AHSME box|year=1996|num-b=16|num-a=18}} | {{AHSME box|year=1996|num-b=16|num-a=18}} |
Revision as of 15:11, 19 August 2011
Problem
In rectangle , angle is trisected by and , where is on , is on , and . Which of the following is closest to the area of the rectangle ?
Solution
Since , each of the three smaller angles is , and and are both triangles.
Defining the variables as illustrated above, we have from
Then , and .
The area of the square is thus .
Using the approximation , we get an area of just under , which is closest to answer . (The actual area is actually greater, since ).
See also
1996 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |