Difference between revisions of "2012 AMC 10A Problems/Problem 17"

(Created page with "==Problem 17== Let <math>a</math> and <math>b</math> be relatively prime integers with <math>a>b>0</math> and <math>\frac{a^3-b^3}{(a-b)^3}</math> = <math>\frac{73}{3}</math>. W...")
 
Line 1: Line 1:
==Problem 17==
+
==Problem==
  
 
Let <math>a</math> and <math>b</math> be relatively prime integers with <math>a>b>0</math> and <math>\frac{a^3-b^3}{(a-b)^3}</math> = <math>\frac{73}{3}</math>. What is <math>a-b</math>?
 
Let <math>a</math> and <math>b</math> be relatively prime integers with <math>a>b>0</math> and <math>\frac{a^3-b^3}{(a-b)^3}</math> = <math>\frac{73}{3}</math>. What is <math>a-b</math>?
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 </math>
 +
 +
== Solution ==
 +
 +
Since <math>a</math> and <math>b</math> are both integers, so must <math>a^3-b^3</math> and <math>(a-b)^3</math>. For this fraction to simplify to <math>\frac{73}{3}</math>, the denominator, or <math>a-b</math>, must be a multiple of 3. Looking at the answer choices, it is only possible when <math>a-b=\boxed{\textbf{(C)}\ 3}</math>.
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2012|ab=A|num-b=16|num-a=18}}

Revision as of 00:13, 9 February 2012

Problem

Let $a$ and $b$ be relatively prime integers with $a>b>0$ and $\frac{a^3-b^3}{(a-b)^3}$ = $\frac{73}{3}$. What is $a-b$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Since $a$ and $b$ are both integers, so must $a^3-b^3$ and $(a-b)^3$. For this fraction to simplify to $\frac{73}{3}$, the denominator, or $a-b$, must be a multiple of 3. Looking at the answer choices, it is only possible when $a-b=\boxed{\textbf{(C)}\ 3}$.

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions