Difference between revisions of "2012 AMC 10A Problems/Problem 25"

m (Solution: (From answer key))
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
10
  
 
== See Also ==
 
== See Also ==
  
 
{{AMC10 box|year=2012|ab=A|num-b=24|after=Last Problem}}
 
{{AMC10 box|year=2012|ab=A|num-b=24|after=Last Problem}}

Revision as of 19:36, 14 February 2012

Problem

Real numbers $x$, $y$, and $z$ are chosen independently and at random from the interval $[0,n]$ for some positive integer $n$. The probability that no two of $x$, $y$, and $z$ are within 1 unit of each other is greater than $\frac {1}{2}$. What is the smallest possible value of $n$?

$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

Solution

10

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions