Difference between revisions of "2010 AMC 8 Problems/Problem 25"
(Created page with "==Problem== Everyday at school, Jo climbs a flight of <math>6</math> stairs. Joe can take the stairs <math>1,2</math>, or <math>3</math> at a time. For example, Jo could climb <m...") |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | We will systematically | + | We will systematically consider all of the possibilities. A valid climb can be thought of as a sequence of some or all of the numbers <math>1</math>, <math>2</math>, and <math>3</math>, in which the sum of the sequence adds to <math>6</math>. Since there is only one way to create a sequence which contains all <math>1s</math>, all <math>2s</math>, or all <math>3s</math>, there are three possible sequences which only contain one number. If we attempt to create sequences which contain one <math>2</math> and the rest <math>1s</math>, the sequence will contain two <math>2s</math> and four <math>1s</math>. We can place the <math>2</math> in either the first, second, third, fourth, or fifth position, giving a total of five possibilities. If we attempt to create sequences which contain one <math>3</math> and the rest <math>1s</math>, the sequence will contain one <math>3</math> and three <math>1s</math>. We can place the <math>3</math> in either the first, second, third, or fourth position, giving a total of four possibilities. For sequences which contain exactly two <math>2s</math> and the rest <math>1s</math>, the sequence will contain two <math>2s</math> and two <math>1s</math>. The two <math>2s</math> could be next to each other, separated by one <math>1</math> in between, or separated by two <math>1s</math> in between. We can place the two <math>2s</math> next to each other in three ways, separated by one <math>1</math> in two ways, and separated by two <math>1s</math> in only one way. This gives us a total of six ways to create a sequence which contains two <math>2s</math> and two <math>1s</math>. Note that we cannot have a sequence of only <math>2s</math> and <math>3s</math> since the sum will either be <math>5</math> or greater than <math>6</math>. We now only need to consider the case where we use all three numbers in the sequence. Since all three numbers add to <math>6</math>, the number of permutations of the three numbers is <math>3!=6</math>. Adding up the number of sequences above, we get: <math>3+5+4+6+6=24</math>. Thus, answer choice <math>\boxed{\textbf{(E)}\ 24}</math> is correct. |
− | |||
− | Since there is only one way to create a sequence which contains all <math>1s</math>, all <math>2s</math>, or all <math>3s</math>, there are three possible sequences which only contain one number. If we attempt to create sequences which contain one <math>2</math> and the rest <math>1s</math>, the sequence will contain two <math>2s</math> and four <math>1s</math>. We can place the <math>2</math> in either the first, second, third, fourth, or fifth position, giving a total of five possibilities. If we attempt to create sequences which contain one <math>3</math> and the rest <math>1s</math>, the sequence will contain one <math>3</math> and three <math>1s</math>. We can place the <math>3</math> in either the first, second, third, or fourth position, giving a total of four possibilities. For sequences which contain exactly two <math>2s</math> and the rest <math>1s</math>, the sequence will contain two <math>2s</math> and two <math>1s</math>. The two <math>2s</math> could be next to each other, separated by one <math>1</math> in between, or separated by two <math>1s</math> in between. We can place the two <math>2s</math> next to each other in three ways, separated by one <math>1</math> in two ways, and separated by two <math>1s</math> in only one way. This gives us a total of six ways to create a sequence which contains two <math>2s</math> and two <math>1s</math>. | ||
− | |||
− | Note that we cannot have a sequence of only <math>2s</math> and <math>3s</math> since the sum will either be <math>5</math> or greater than <math>6</math>. We now only need to consider the case where we use all three numbers in the sequence. Since all three numbers add to <math>6</math>, the number of permutations of the three numbers is <math>3!=6</math>. | ||
− | |||
− | Adding up the number of sequences above, we get: <math>3+5+4+6+6=24</math>. Thus, answer choice <math>\boxed{\textbf{(E)}\ 24}</math> is correct. | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2010|num-b=25|after=Last Problem}} | {{AMC8 box|year=2010|num-b=25|after=Last Problem}} |
Revision as of 19:23, 4 March 2012
Problem
Everyday at school, Jo climbs a flight of stairs. Joe can take the stairs , or at a time. For example, Jo could climb , then , then . In how many ways can Jo climb the stairs?
Solution
We will systematically consider all of the possibilities. A valid climb can be thought of as a sequence of some or all of the numbers , , and , in which the sum of the sequence adds to . Since there is only one way to create a sequence which contains all , all , or all , there are three possible sequences which only contain one number. If we attempt to create sequences which contain one and the rest , the sequence will contain two and four . We can place the in either the first, second, third, fourth, or fifth position, giving a total of five possibilities. If we attempt to create sequences which contain one and the rest , the sequence will contain one and three . We can place the in either the first, second, third, or fourth position, giving a total of four possibilities. For sequences which contain exactly two and the rest , the sequence will contain two and two . The two could be next to each other, separated by one in between, or separated by two in between. We can place the two next to each other in three ways, separated by one in two ways, and separated by two in only one way. This gives us a total of six ways to create a sequence which contains two and two . Note that we cannot have a sequence of only and since the sum will either be or greater than . We now only need to consider the case where we use all three numbers in the sequence. Since all three numbers add to , the number of permutations of the three numbers is . Adding up the number of sequences above, we get: . Thus, answer choice is correct.
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 25 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |