Difference between revisions of "1978 USAMO Problems/Problem 1"

(Created page with "== Problem == Given that <math>a,b,c,d,e</math> are real numbers such that <math>a+b+c+d+e=8</math>, <math>a^2+b^2+c^2+d^2+e^2=16</math>. Determine the maximum value of <math>...")
 
(http://image.ohozaa.com/view2/vUGiXdRQdAPyw036)
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Accordting to '''Cauchy-Schwarz Inequalities''', we can see <math>(1+1+1+1)(a^2+b^2+c^2+d^2)\geqslant (a+b+c+d)^2</math>
 +
thus, <math>4(16-e^2)\geqslant (8-e)^2</math>
 +
Finally, <math>e(5e-16) \geqslant 0</math> that mean, <math>\frac{16}{5} \geqslant e \geqslant 0</math>
 +
'''so''' the maximum value of <math>e</math> is <math>\frac{16}{5}</math>
 +
 
 +
'''from:''' [http://www.mathcenter.net/forum Mathcenter.net]
  
 
== See Also ==
 
== See Also ==

Revision as of 11:30, 20 March 2013

Problem

Given that $a,b,c,d,e$ are real numbers such that

$a+b+c+d+e=8$,

$a^2+b^2+c^2+d^2+e^2=16$.

Determine the maximum value of $e$.

Solution

Accordting to Cauchy-Schwarz Inequalities, we can see $(1+1+1+1)(a^2+b^2+c^2+d^2)\geqslant (a+b+c+d)^2$ thus, $4(16-e^2)\geqslant (8-e)^2$ Finally, $e(5e-16) \geqslant 0$ that mean, $\frac{16}{5} \geqslant e \geqslant 0$ so the maximum value of $e$ is $\frac{16}{5}$

from: Mathcenter.net

See Also

1978 USAMO (ProblemsResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions