Difference between revisions of "2012 AMC 10A Problems/Problem 6"

(Fixed brackets)
Line 27: Line 27:
  
 
{{AMC10 box|year=2012|ab=A|num-b=5|num-a=7}}
 
{{AMC10 box|year=2012|ab=A|num-b=5|num-a=7}}
 +
{{MAA Notice}}

Revision as of 11:04, 4 July 2013

Problem

The product of two positive numbers is 9. The reciprocal of one of these numbers is 4 times the reciprocal of the other number. What is the sum of the two numbers?

$\textbf{(A)}\ \frac{10}{3}\qquad\textbf{(B)}\ \frac{20}{3}\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ \frac{15}{2}\qquad\textbf{(E)}\ 8$

Solution

Let the two numbers equal $x$ and $y$. From the information given in the problem, two equations can be written:

$xy=9$

$\frac{1}{x}=4 \left( \frac{1}{y} \right)$

Therefore, $4x=y$

Replacing $y$ with $4x$ in the equation,

$4x^2=9$

So $x=\frac{3}{2}$ and $y$ would then be $4 \times$ $\frac{3}{2}=6$

The sum would be $\frac{3}{2}+6$ = $\boxed{\textbf{(D)}\ \frac{15}{2}}$


See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png