Difference between revisions of "2006 AMC 12B Problems/Problem 23"

(Solution 2 -- more of an outline)
Line 88: Line 88:
 
Rotate triangle <math>PAC</math> 90 degrees counterclockwise about <math>C</math> so that the image of <math>A</math> rests on <math>B</math>. Now let the image of <math>P</math> be <math>P'</math>. Note that <math>P'C=6</math>, meaning triangle <math>PCP'</math> is right isosceles, and <math>\angle PP'C=45^\circ</math>. Then <math>PP'=6\sqrt{2}</math>. Now because <math>PB=7</math> and <math>P'B=11</math>, we observe that <math>\angle P'PB=90^\circ</math>, by the Pythagorean Theorem on <math>P'PB</math>. Now we have that <math>\angle APC=\angle BP'C=\angle BP'P + \angle PP'C</math>. So we take the cosine of the second equality, using that fact that <math>\angle PP'C=45^\circ</math>, to get <math>\cos(BP'C)=\frac{6\sqrt{2}-7}{11\sqrt{2}}</math>. Finally, we use the fact that <math>\cos(BP'C)=\cos(CPA)</math> and use the Law of Cosines on triangle <math>CPA</math> to arrive at the value of <math>s^2</math>.
 
Rotate triangle <math>PAC</math> 90 degrees counterclockwise about <math>C</math> so that the image of <math>A</math> rests on <math>B</math>. Now let the image of <math>P</math> be <math>P'</math>. Note that <math>P'C=6</math>, meaning triangle <math>PCP'</math> is right isosceles, and <math>\angle PP'C=45^\circ</math>. Then <math>PP'=6\sqrt{2}</math>. Now because <math>PB=7</math> and <math>P'B=11</math>, we observe that <math>\angle P'PB=90^\circ</math>, by the Pythagorean Theorem on <math>P'PB</math>. Now we have that <math>\angle APC=\angle BP'C=\angle BP'P + \angle PP'C</math>. So we take the cosine of the second equality, using that fact that <math>\angle PP'C=45^\circ</math>, to get <math>\cos(BP'C)=\frac{6\sqrt{2}-7}{11\sqrt{2}}</math>. Finally, we use the fact that <math>\cos(BP'C)=\cos(CPA)</math> and use the Law of Cosines on triangle <math>CPA</math> to arrive at the value of <math>s^2</math>.
  
 +
Or notice that since <math>\angle P'PB=90^\circ</math> and <math>\angle PP'C=45^\circ</math>, we have <math>\angle BPC=135^\circ</math>, and Law of Cosines on triangle <math>BPC</math> gives the value of <math>s^2</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}}
 
{{AMC12 box|year=2006|ab=B|num-b=22|num-a=24}}

Revision as of 18:50, 23 January 2013

Problem

Isosceles $\triangle ABC$ has a right angle at $C$. Point $P$ is inside $\triangle ABC$, such that $PA=11$, $PB=7$, and $PC=6$. Legs $\overline{AC}$ and $\overline{BC}$ have length $s=\sqrt{a+b\sqrt{2}{$ (Error compiling LaTeX. Unknown error_msg), where $a$ and $b$ are positive integers. What is $a+b$?

[asy] pathpen = linewidth(0.7); pen f = fontsize(10); size(5cm); pair B = (0,sqrt(85+42*sqrt(2))); pair A = (B.y,0); pair C = (0,0); pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); D(A--B--C--cycle); D(P--A); D(P--B); D(P--C); MP("A",D(A),plain.E,f); MP("B",D(B),plain.N,f); MP("C",D(C),plain.SW,f); MP("P",D(P),plain.NE,f); [/asy]

$\mathrm{(A)}\ 85 \qquad \mathrm{(B)}\ 91 \qquad \mathrm{(C)}\ 108 \qquad \mathrm{(D)}\ 121 \qquad \mathrm{(E)}\ 127$

Solution

[asy] pathpen = linewidth(0.7); pen f = fontsize(10); size(5cm); pair B = (0,sqrt(85+42*sqrt(2))); pair A = (B.y,0); pair C = (0,0); pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); D(A--B--C--cycle); D(P--A); D(P--B); D(P--C); MP("A",D(A),plain.E,f); MP("B",D(B),plain.N,f); MP("C",D(C),plain.SW,f); MP("P",D(P),plain.NE,f); MP("\alpha",C,5*dir(80),f); MP("90^\circ-\alpha",C,3*dir(30),f); MP("s",(A+C)/2,plain.S,f); MP("s",(B+C)/2,plain.W,f); [/asy] Using the Law of Cosines on $\triangle PBC$, we have:

\begin{align*} PB^2&=BC^2+PC^2-2\cdot BC\cdot PC\cdot \cos(\alpha) \Rightarrow 49 = 36 + s^2 - 12s\cos(\alpha) \Rightarrow \cos(\alpha) = \dfrac{s^2-13}{12s}. \end{align*}

Using the Law of Cosines on $\triangle PAC$, we have: \begin{align*} PA^2&=AC^2+PC^2-2\cdot AC\cdot PC\cdot \cos(90^\circ-\alpha) \Rightarrow 121 = 36 + s^2 - 12s\sin(\alpha) \Rightarrow \sin(\alpha) = \dfrac{s^2-85}{12s}. \end{align*}

Now we use $\sin^2(\alpha) + \cos^2(\alpha) = 1$. \begin{align*} \sin^2(\alpha)+\cos^2(\alpha) = 1 &\Rightarrow \frac{s^4-26s^2+169}{144s^2} + \frac{s^4-170s^2+7225}{144s^2} = 1 \\ &\Rightarrow 2s^4-340s^2+7394 = 0 \\ &\Rightarrow s^4-170s^2+3697 = 0 \\ &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{170^2 - 4\cdot3697}}{2}\\ &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{28900 - 14788}}{2}\\ &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{14112}}{2}\\ &\Rightarrow s^2 = \dfrac{170 \pm \sqrt{2^5\cdot3^2\cdot7^2}}{2}\\ &\Rightarrow s^2 = \dfrac{170 \pm 84\sqrt{2}}{2} = 85 \pm 42\sqrt2  \end{align*}

Note that we know that we want the solution with $s^2 > 85$ since we know that $\sin(\alpha) > 0$. Thus, $a+b=85+42=\boxed{127}$.

Solution 2

Rotate triangle $PAC$ 90 degrees counterclockwise about $C$ so that the image of $A$ rests on $B$. Now let the image of $P$ be $P'$. Note that $P'C=6$, meaning triangle $PCP'$ is right isosceles, and $\angle PP'C=45^\circ$. Then $PP'=6\sqrt{2}$. Now because $PB=7$ and $P'B=11$, we observe that $\angle P'PB=90^\circ$, by the Pythagorean Theorem on $P'PB$. Now we have that $\angle APC=\angle BP'C=\angle BP'P + \angle PP'C$. So we take the cosine of the second equality, using that fact that $\angle PP'C=45^\circ$, to get $\cos(BP'C)=\frac{6\sqrt{2}-7}{11\sqrt{2}}$. Finally, we use the fact that $\cos(BP'C)=\cos(CPA)$ and use the Law of Cosines on triangle $CPA$ to arrive at the value of $s^2$.

Or notice that since $\angle P'PB=90^\circ$ and $\angle PP'C=45^\circ$, we have $\angle BPC=135^\circ$, and Law of Cosines on triangle $BPC$ gives the value of $s^2$.

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions