Difference between revisions of "1992 AIME Problems/Problem 14"

(Solution)
Line 2: Line 2:
 
In triangle <math>ABC^{}_{}</math>, <math>A'</math>, <math>B'</math>, and <math>C'</math> are on the sides <math>BC</math>, <math>AC^{}_{}</math>, and <math>AB^{}_{}</math>, respectively. Given that <math>AA'</math>, <math>BB'</math>, and <math>CC'</math> are concurrent at the point <math>O^{}_{}</math>, and that <math>\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92</math>, find <math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}</math>.
 
In triangle <math>ABC^{}_{}</math>, <math>A'</math>, <math>B'</math>, and <math>C'</math> are on the sides <math>BC</math>, <math>AC^{}_{}</math>, and <math>AB^{}_{}</math>, respectively. Given that <math>AA'</math>, <math>BB'</math>, and <math>CC'</math> are concurrent at the point <math>O^{}_{}</math>, and that <math>\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92</math>, find <math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}</math>.
  
== Solution ==
+
== Solution 1==
 +
Let <math>K_A=[BOC], K_B=[COA],</math> and <math>K_C=[AOB].</math>  Due to triangles <math>BOC</math> and <math>ABC</math> having the same base,  <cmath>\frac{AO}{OA'}+1=\frac{AA'}{OA'}=\frac{[ABC]}{[BOC]}=\frac{K_A+K_B+K_C}{K_A}.</cmath>  Therefore, we have \begin{align*}
 +
    \frac{AO}{OA'}=\frac{K_B+K_C}{K_A}\\ \frac{BO}{OB'}=\frac{K_A+K_C}{K_B}\\ \frac{CO}{OC'}=\frac{K_A+K_B}{K_C}.
 +
\end{align*} Thus, we are given <cmath>\frac{K_B+K_C}{K_A}+\frac{K_A+K_C}{K_B}+\frac{K_A+K_B}{K_C}=92.</cmath> Combining and expanding gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}=92.</cmath> We desire <math>\frac{(K_B+K_C)(K_C+K_A)(K_A+K_B)}{K_AK_BK_C}.</math> Expanding gives <cmath>\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}+2=\boxed{094}.</cmath>
 +
 
 +
 
 +
== Solution 2 ==
 
Using [[mass points]], let the weights of <math>A</math>, <math>B</math>, and <math>C</math> be <math>a</math>, <math>b</math>, and <math>c</math> respectively.  
 
Using [[mass points]], let the weights of <math>A</math>, <math>B</math>, and <math>C</math> be <math>a</math>, <math>b</math>, and <math>c</math> respectively.  
  
Line 12: Line 18:
 
<math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}</math> <math>= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =</math>  
 
<math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}</math> <math>= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =</math>  
  
<math>2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} </math> <math>= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}</math>.  
+
<math>2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} </math> <math>= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 22:01, 5 December 2018

Problem

In triangle $ABC^{}_{}$, $A'$, $B'$, and $C'$ are on the sides $BC$, $AC^{}_{}$, and $AB^{}_{}$, respectively. Given that $AA'$, $BB'$, and $CC'$ are concurrent at the point $O^{}_{}$, and that $\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92$, find $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}$.

Solution 1

Let $K_A=[BOC], K_B=[COA],$ and $K_C=[AOB].$ Due to triangles $BOC$ and $ABC$ having the same base, \[\frac{AO}{OA'}+1=\frac{AA'}{OA'}=\frac{[ABC]}{[BOC]}=\frac{K_A+K_B+K_C}{K_A}.\] Therefore, we have \begin{align*}

   \frac{AO}{OA'}=\frac{K_B+K_C}{K_A}\\ \frac{BO}{OB'}=\frac{K_A+K_C}{K_B}\\ \frac{CO}{OC'}=\frac{K_A+K_B}{K_C}.

\end{align*} Thus, we are given \[\frac{K_B+K_C}{K_A}+\frac{K_A+K_C}{K_B}+\frac{K_A+K_B}{K_C}=92.\] Combining and expanding gives \[\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}=92.\] We desire $\frac{(K_B+K_C)(K_C+K_A)(K_A+K_B)}{K_AK_BK_C}.$ Expanding gives \[\frac{K_A^2K_B+K_AK_B^2+K_A^2K_C+K_AK_C^2+K_B^2K_C+K_BK_C^2}{K_AK_BK_C}+2=\boxed{094}.\]


Solution 2

Using mass points, let the weights of $A$, $B$, and $C$ be $a$, $b$, and $c$ respectively.

Then, the weights of $A'$, $B'$, and $C'$ are $b+c$, $c+a$, and $a+b$ respectively.

Thus, $\frac{AO^{}_{}}{OA'} = \frac{b+c}{a}$, $\frac{BO^{}_{}}{OB'} = \frac{c+a}{b}$, and $\frac{CO^{}_{}}{OC'} = \frac{a+b}{c}$.

Therefore: $\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}$ $= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =$

$2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ $= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png