Difference between revisions of "2003 AMC 8 Problems/Problem 21"

(Problem)
Line 9: Line 9:
 
label("$A$", (0,0), SW);
 
label("$A$", (0,0), SW);
 
label("$D$", (31,0), SE);
 
label("$D$", (31,0), SE);
 +
label("$F$", (53,0), SE)
 
label("$B$", (6,8), NW);
 
label("$B$", (6,8), NW);
 
label("$C$", (16,8), NE);
 
label("$C$", (16,8), NE);
 
label("10", (3,5), W);
 
label("10", (3,5), W);
 
label("8", (11,4), E);
 
label("8", (11,4), E);
label("17", (22.5,5), E);</asy>  
+
label("17", (22.5,5), E);</asy>
  
 
== Solution ==
 
== Solution ==

Revision as of 10:19, 29 August 2016

Problem

The area of trapezoid $ABCD$ is $164\text{ cm}^2$. The altitude is 8 cm, $AB$ is 10 cm, and $CD$ is 17 cm. What is $BC$, in centimeters?

/* AMC8 2003 #21 Problem */
size(4inch,2inch);
draw((0,0)--(31,0)--(16,8)--(6,8)--cycle);
draw((11,8)--(11,0), linetype("8 4"));
draw((11,1)--(12,1)--(12,0));
label("$A$", (0,0), SW);
label("$D$", (31,0), SE);
label("$F$", (53,0), SE)
label("$B$", (6,8), NW);
label("$C$", (16,8), NE);
label("10", (3,5), W);
label("8", (11,4), E);
label("17", (22.5,5), E); (Error making remote request. Unknown error_msg)

Solution

Using the formula for the area of a trapezoid, we have $164=8(\frac{BC+AD}{2})$. Thus $BC+AD=41$. Drop perpendiculars from $B$ to $AD$ and from $C$ to $AD$ and let them hit $AD$ at $E$ and $F$ respectively. Note that each of these perpendiculars has length $8$. From the Pythagorean Theorem, $AE=6$ and $DF=15$ thus $AD=BC+21$. Substituting back into our original equation we have $BC+BC+21=41$ thus $BC=\boxed{\text{(B)}\ 10}$

See Also

2003 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png