Difference between revisions of "2014 AMC 10A Problems/Problem 21"

(Created page with "==Problem== Positive integers <math>a</math> and <math>b</math> are such that the graphs of <math>y=ax+5</math> and <math>y=3x+b</math> intersect the <math>x</math>-axis at the s...")
 
Line 3: Line 3:
  
 
<math> \textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\ {-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8} </math>
 
<math> \textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\ {-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8} </math>
 +
 +
==Solution==
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2014|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 22:20, 6 February 2014

Problem

Positive integers $a$ and $b$ are such that the graphs of $y=ax+5$ and $y=3x+b$ intersect the $x$-axis at the same point. What is the sum of all possible $x$-coordinates of these points of intersection?

$\textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\ {-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8}$

Solution

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png