Difference between revisions of "2012 AMC 10B Problems/Problem 11"

(Solution)
m (Problem 11)
Line 2: Line 2:
 
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?
 
A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?
  
<math> \textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\2304 </math>
+
<math> \textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304 </math>
  
 
== Solution ==
 
== Solution ==

Revision as of 22:27, 28 October 2015

Problem 11

A dessert chef prepares the dessert for every day of a week starting with Sunday. The dessert each day is either cake, pie, ice cream, or pudding. The same dessert may not be served two days in a row. There must be cake on Friday because of a birthday. How many different dessert menus for the week are possible?

$\textbf{(A)}\ 729\qquad\textbf{(B)}\ 972\qquad\textbf{(C)}\ 1024\qquad\textbf{(D)}\ 2187\qquad\textbf{(E)}\ 2304$

Solution

Desserts must be chosen for $7$ days: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

There are $3$ choices for dessert on Saturday: pie, ice cream, or pudding, as there must be cake on Friday and the same dessert may not be served two days in a row. Likewise, there are $3$ choices for dessert on Thursday. Once dessert for Thursday is selected, there are $3$ choices for dessert on Wednesday, once Wednesday's dessert is selected there are $3$ choices for dessert on Tuesday, etc. Thus, there are $3$ choices for dessert for each of $6$ days, so the total number of possible dessert menus is $3^6$, or $\boxed{\textbf{(A)}\ 729}$.

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png