Difference between revisions of "2009 AIME I Problems/Problem 6"
Kevinchang13 (talk | contribs) m (→Solution) |
Kevinchang13 (talk | contribs) m (→Solution) |
||
Line 6: | Line 6: | ||
First, <math>x</math> must be less than <math>5</math>, since otherwise <math>x^{\lfloor x\rfloor}</math> would be at least <math>3125</math> which is greater than <math>1000</math>. | First, <math>x</math> must be less than <math>5</math>, since otherwise <math>x^{\lfloor x\rfloor}</math> would be at least <math>3125</math> which is greater than <math>1000</math>. | ||
− | + | Because <math>{\lfloor x\rfloor}</math> must be an integer, we can do some simple case work: | |
For <math>{\lfloor x\rfloor}=0</math>, <math>N=1</math> no matter what <math>x</math> is | For <math>{\lfloor x\rfloor}=0</math>, <math>N=1</math> no matter what <math>x</math> is |
Revision as of 22:41, 27 January 2015
Problem
How many positive integers less than are there such that the equation has a solution for ? (The notation denotes the greatest integer that is less than or equal to .)
Solution
First, must be less than , since otherwise would be at least which is greater than .
Because must be an integer, we can do some simple case work:
For , no matter what is
For , can be anything between to excluding
This gives us 's
For , can be anything between to excluding
This gives us 's
For , can be anything between to excluding
This gives us 's
For , can be anything between to excluding
This gives us 's
Since must be less than , we can stop here and the answer is possible values for .
See also
2009 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.