Difference between revisions of "2012 AIME II Problems/Problem 15"
(→Solution 1) |
m (→Solution 1) |
||
Line 7: | Line 7: | ||
I'm sure there is a more elegant solution from here, but instead we'll do some hairy law of cosines: | I'm sure there is a more elegant solution from here, but instead we'll do some hairy law of cosines: | ||
− | <math>AE^2 = AF^2 + EF^2 - 2 \cdot AF \cdot EF \cdot cos \angle AFE.</math> (1) | + | <math>AE^2 = AF^2 + EF^2 - 2 \cdot AF \cdot EF \cdot \cos \angle AFE.</math> (1) |
− | <math>AF^2 = AE^2 + EF^2 - 2 \cdot AE \cdot EF \cdot cos \angle AEF.</math> Adding these two and simplifying we get: | + | <math>AF^2 = AE^2 + EF^2 - 2 \cdot AE \cdot EF \cdot \cos \angle AEF.</math> Adding these two and simplifying we get: |
− | <math>EF = AF \cdot cos \angle AFE + AE \cdot cos \angle AEF</math> (2). Ah, but <math>\angle AFE = \angle ACE</math> (since <math>F</math> lies on <math>\omega</math>), and we can find <math>cos \angle ACE</math> using the law of cosines: | + | <math>EF = AF \cdot \cos \angle AFE + AE \cdot \cos \angle AEF</math> (2). Ah, but <math>\angle AFE = \angle ACE</math> (since <math>F</math> lies on <math>\omega</math>), and we can find <math>cos \angle ACE</math> using the law of cosines: |
− | <math>AE^2 = AC^2 + CE^2 - 2 \cdot AC \cdot CE \cdot cos \angle ACE</math>, and plugging in <math>AE = 8, AC = 3, BE = BC = 7,</math> we get <math>cos \angle ACE = -1/7 = cos \angle AFE</math>. | + | <math>AE^2 = AC^2 + CE^2 - 2 \cdot AC \cdot CE \cdot \cos \angle ACE</math>, and plugging in <math>AE = 8, AC = 3, BE = BC = 7,</math> we get <math>\cos \angle ACE = -1/7 = \cos \angle AFE</math>. |
− | Also, <math>\angle AEF = \angle DEF</math>, and <math>\angle DFE = \pi/2</math> (since <math>F</math> is on the circle <math>\gamma</math> with diameter <math>DE</math>), so <math>cos \angle AEF = EF/DE = 8 \cdot EF/49</math>. | + | Also, <math>\angle AEF = \angle DEF</math>, and <math>\angle DFE = \pi/2</math> (since <math>F</math> is on the circle <math>\gamma</math> with diameter <math>DE</math>), so <math>\cos \angle AEF = EF/DE = 8 \cdot EF/49</math>. |
Plugging in all our values into equation (2), we get: | Plugging in all our values into equation (2), we get: |
Revision as of 17:08, 22 February 2016
Contents
Problem 15
Triangle is inscribed in circle with , , and . The bisector of angle meets side at and circle at a second point . Let be the circle with diameter . Circles and meet at and a second point . Then , where and are relatively prime positive integers. Find .
Solution 1
Use the angle bisector theorem to find , , and use the Stewart's Theorem to find . Use Power of the Point to find , and so . Use law of cosines to find , hence as well, and is equilateral, so .
I'm sure there is a more elegant solution from here, but instead we'll do some hairy law of cosines:
(1)
Adding these two and simplifying we get:
(2). Ah, but (since lies on ), and we can find using the law of cosines:
, and plugging in we get .
Also, , and (since is on the circle with diameter ), so .
Plugging in all our values into equation (2), we get:
, or .
Finally, we plug this into equation (1), yielding:
. Thus,
or The answer is .
Solution 2
Let , , for convenience. We claim that is a symmedian. Indeed, let be the midpoint of segment . Since , it follows that and consequently . Therefore, . Now let . Since is a diameter, lies on the perpendicular bisector of ; hence , , are collinear. From , it immediately follows that quadrilateral is cyclic. Therefore, , implying that is a symmedian, as claimed.
The rest is standard; here's a quick way to finish. From above, quadrilateral is harmonic, so . In conjunction with , it follows that . (Notice that this holds for all triangles .) To finish, substitute , , to obtain as before.
-Solution by thecmd999
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.