Difference between revisions of "2011 AMC 10B Problems/Problem 24"

(Solution)
m (Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
We see that for the graph of <math>y=mx+2</math> to not pass through any lattice points, the denominator of <math>m</math> must be greater than <math>100</math>, or else it would be canceled by some <math>0<x\le100</math> which would make <math>y</math> an integer. By using common denominators, we find that the order of the fractions from smallest to largest is <math>(A), (B), (C), (D), (E)</math>. We can see that when <math>x=\frac{50}{99}</math>, <math>y</math> would be an integer, so therefore any fraction greater than <math>\frac{50}{99}</math> would not work, as substituting <math>\frac{50}{99}</math> for <math>m</math> would produce an integer for <math>y</math>. So now we are left with only <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math>. But because <math>\frac{51}{101}=\frac{5049}{9999}</math> and <math>\frac{50}{99}=\frac{5050}{9999}</math>, we can be certain that there is no number between <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math> that can reduce to a fraction whose denominator is less than or equal to <math>100</math>. Since we are looking for the maximum value of <math>a</math>, we take the larger of <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math>, which is <math>\boxed{\textbf{(B)}\frac{50}{99}}</math>.
+
We see that for the graph of <math>y=mx+2</math> to not pass through any lattice points, the denominator of <math>m</math> must be greater than <math>100</math>, or else it would be canceled by some <math>0<x\le100</math> which would make <math>y</math> an integer. By using common denominators, we find that the order of the fractions from smallest to largest is <math>(A), (B), (C), (D), (E)</math>. We can see that when <math>x=\frac{50}{99}</math>, <math>y</math> would be an integer, so therefore any fraction greater than <math>\frac{50}{99}</math> would not work, as substituting       <math>\frac{50}{99}</math> for <math>m</math> would produce an integer for <math>y</math>. So now we are left with only <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math>. But because <math>\frac{51}{101}=\frac{5049}{9999}</math> and <math>\frac{50}{99}=\frac{5050}{9999}</math>, we can be certain that there is no number between <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math> that can reduce to a fraction whose denominator is less than or equal to <math>100</math>. Since we are looking for the maximum value of <math>a</math>, we take the larger of <math>\frac{51}{101}</math> and <math>\frac{50}{99}</math>, which is <math>\boxed{\textbf{(B)}\frac{50}{99}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2011|ab=B|num-a=25|num-b=23}}
 
{{AMC10 box|year=2011|ab=B|num-a=25|num-b=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:38, 15 February 2016

Problem

A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx +2$ passes through no lattice point with $0 < x \le 100$ for all $m$ such that $\frac{1}{2} < m < a$. What is the maximum possible value of $a$?

$\textbf{(A)}\ \frac{51}{101} \qquad\textbf{(B)}\ \frac{50}{99} \qquad\textbf{(C)}\ \frac{51}{100} \qquad\textbf{(D)}\ \frac{52}{101} \qquad\textbf{(E)}\ \frac{13}{25}$

Solution

We see that for the graph of $y=mx+2$ to not pass through any lattice points, the denominator of $m$ must be greater than $100$, or else it would be canceled by some $0<x\le100$ which would make $y$ an integer. By using common denominators, we find that the order of the fractions from smallest to largest is $(A), (B), (C), (D), (E)$. We can see that when $x=\frac{50}{99}$, $y$ would be an integer, so therefore any fraction greater than $\frac{50}{99}$ would not work, as substituting $\frac{50}{99}$ for $m$ would produce an integer for $y$. So now we are left with only $\frac{51}{101}$ and $\frac{50}{99}$. But because $\frac{51}{101}=\frac{5049}{9999}$ and $\frac{50}{99}=\frac{5050}{9999}$, we can be certain that there is no number between $\frac{51}{101}$ and $\frac{50}{99}$ that can reduce to a fraction whose denominator is less than or equal to $100$. Since we are looking for the maximum value of $a$, we take the larger of $\frac{51}{101}$ and $\frac{50}{99}$, which is $\boxed{\textbf{(B)}\frac{50}{99}}$.

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png