Difference between revisions of "2016 AMC 10A Problems/Problem 22"
m (→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | Since the prime factorization of <math>110</math> is <math>2 \cdot 5 \cdot 11</math>, we have that the number is equal to <math>2 \cdot 5 \cdot 11 \cdot n^3</math>. This has <math>2 \cdot 2 \cdot 2=8</math> factors when <math>n=1</math>. This needs a multiple of 11 factors, which we can achieve by setting <math>n=2^3</math>, so we have <math>2^{10} \cdot 5 \cdot 8</math> has <math>44</math> factors. To achieve the desired <math>110</math> factors, we need the number of factors to also be divisible by <math>5</math>, so we can set <math>n=2^3 \cdot 5</math>, so <math>2^10 \cdot 5^4 \cdot 11</math> has <math>110</math> factors. Therefore, <math>n=2^3 \cdot 5</math>. In order to find the number of factors of <math>81n^4</math>, we raise this to the fourth power and multiply it by <math>81</math>, and find the factors of that number. We have <math>3^4 \cdot 2^{12} \cdot 5^4</math>, and this has <math>5 \cdot 13 \cdot 5=\boxed{\textbf{(D) }325}</math> factors. | + | Since the prime factorization of <math>110</math> is <math>2 \cdot 5 \cdot 11</math>, we have that the number is equal to <math>2 \cdot 5 \cdot 11 \cdot n^3</math>. This has <math>2 \cdot 2 \cdot 2=8</math> factors when <math>n=1</math>. This needs a multiple of 11 factors, which we can achieve by setting <math>n=2^3</math>, so we have <math>2^{10} \cdot 5 \cdot 8</math> has <math>44</math> factors. To achieve the desired <math>110</math> factors, we need the number of factors to also be divisible by <math>5</math>, so we can set <math>n=2^3 \cdot 5</math>, so <math>2^{10} \cdot 5^4 \cdot 11</math> has <math>110</math> factors. Therefore, <math>n=2^3 \cdot 5</math>. In order to find the number of factors of <math>81n^4</math>, we raise this to the fourth power and multiply it by <math>81</math>, and find the factors of that number. We have <math>3^4 \cdot 2^{12} \cdot 5^4</math>, and this has <math>5 \cdot 13 \cdot 5=\boxed{\textbf{(D) }325}</math> factors. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=A|num-b=21|num-a=23}} | {{AMC10 box|year=2016|ab=A|num-b=21|num-a=23}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:42, 3 February 2016
Problem
For some positive integer , the number has positive integer divisors, including and the number . How many positive integer divisors does the number have?
Solution
Since the prime factorization of is , we have that the number is equal to . This has factors when . This needs a multiple of 11 factors, which we can achieve by setting , so we have has factors. To achieve the desired factors, we need the number of factors to also be divisible by , so we can set , so has factors. Therefore, . In order to find the number of factors of , we raise this to the fourth power and multiply it by , and find the factors of that number. We have , and this has factors.
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.