Difference between revisions of "2016 AMC 10A Problems/Problem 19"
(→Solution) |
m (Not the same problem) |
||
Line 28: | Line 28: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | {{AMC10 box|year=2016|ab=A|num-b=18|num-a=20}} | ||
− | |||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:24, 5 February 2016
Problem
In rectangle
and
. Point
between
and
, and point
between
and
are such that
. Segments
and
intersect
at
and
, respectively. The ratio
can be written as
where the greatest common factor of
and
is
What is
?
Solution
Since
Similarly,
. Call the hypotonuse
. This means that
. Applying similar triangles to
and
, we see that
. Thus
. Therefore,
so
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.