Difference between revisions of "2016 AMC 10A Problems/Problem 21"
Turkeybob777 (talk | contribs) m (→Solution 2) |
m (→Solution) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math> | <math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<asy> | <asy> | ||
size(250); | size(250); |
Revision as of 21:39, 25 January 2017
Circles with centers and , having radii and , respectively, lie on the same side of line and are tangent to at and , respectively, with between and . The circle with center is externally tangent to each of the other two circles. What is the area of triangle ?
Solution 1
Notice that we can find in two different ways: and , so
. Additionally, . Therefore, . Similarly, . We can calculate easily because . .
Plugging into first equation, the two sums of areas, .
.
Solution 2
Use the Shoelace Theorem.
Let the center of the first circle of radius 1 be at (0, 1).
Draw the trapezoid and using the Pythagorean Theorem, we get that so the center of the second circle of radius 2 is at .
Draw the trapezoid and using the Pythagorean Theorem, we get that so the center of the third circle of radius 3 is at .
Now, we may use the Shoelace Theorem!
.
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.