Difference between revisions of "2003 AIME I Problems/Problem 10"
(→Solution 2) |
m (→Solution 1) |
||
Line 29: | Line 29: | ||
<math>\angle MCN = 106^\circ - 2\cdot 23^\circ = 60^\circ</math>. Also, since <math>\triangle AMC</math> and <math>\triangle BNC</math> are congruent (by ASA), <math>CM = CN</math>. Hence <math>\triangle CMN</math> is an [[equilateral triangle]], so <math>\angle CNM = 60^\circ</math>. | <math>\angle MCN = 106^\circ - 2\cdot 23^\circ = 60^\circ</math>. Also, since <math>\triangle AMC</math> and <math>\triangle BNC</math> are congruent (by ASA), <math>CM = CN</math>. Hence <math>\triangle CMN</math> is an [[equilateral triangle]], so <math>\angle CNM = 60^\circ</math>. | ||
− | Then <math>\angle MNB = 360^\circ - \angle CNM - \angle CNB = 360^\circ - 60^\circ - 150^\circ = 150^\circ</math>. We now see that <math>\triangle MNB</math> and <math>\triangle CNB</math> are congruent. Therefore, <math>CB = MB</math>, so <math>\angle CMB = \angle MCB = \boxed{ | + | Then <math>\angle MNB = 360^\circ - \angle CNM - \angle CNB = 360^\circ - 60^\circ - 150^\circ = 150^\circ</math>. We now see that <math>\triangle MNB</math> and <math>\triangle CNB</math> are congruent. Therefore, <math>CB = MB</math>, so <math>\angle CMB = \angle MCB = \boxed{83^\circ}</math>. |
=== Solution 2 === | === Solution 2 === |
Revision as of 00:43, 10 January 2018
Problem
Triangle is isosceles with and Point is in the interior of the triangle so that and Find the number of degrees in
Solution
Solution 1
Take point inside such that and .
. Also, since and are congruent (by ASA), . Hence is an equilateral triangle, so .
Then . We now see that and are congruent. Therefore, , so .
Solution 2
From the givens, we have the following angle measures: , . If we define then we also have . Then apply the Law of Sines to triangles and to get
Clearing denominators, evaluating and applying one of our trigonometric identities to the result gives
and multiplying through by 2 and applying the double angle formula gives
and so ; since , we must have , so the answer is .
Solution 3
Without loss of generality, let . Then, using Law of Sines in triangle , we get , and using the sine addition formula to evaluate , we get .
Then, using Law of Cosines in triangle , we get , since . So triangle is isosceles, and .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.