Difference between revisions of "2017 AMC 12A Problems/Problem 6"

(Created page with "Joy has <math>30</math> thin rods, one each of every integer length from <math>1 \text{ cm}</math> through <math>30 \text{ cm}</math>. She places the rods with lengths <math>3...")
 
(Added See Also)
Line 1: Line 1:
 +
==Problem==
 +
 
Joy has <math>30</math> thin rods, one each of every integer length from <math>1 \text{ cm}</math> through <math>30 \text{ cm}</math>. She places the rods with lengths <math>3 \text{ cm}</math>, <math>7 \text{ cm}</math>, and <math>15 \text{cm}</math> on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?
 
Joy has <math>30</math> thin rods, one each of every integer length from <math>1 \text{ cm}</math> through <math>30 \text{ cm}</math>. She places the rods with lengths <math>3 \text{ cm}</math>, <math>7 \text{ cm}</math>, and <math>15 \text{cm}</math> on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?
  
  
 
<math>\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 17 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 19  \qquad\textbf{(E)}\ 20</math>
 
<math>\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 17 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 19  \qquad\textbf{(E)}\ 20</math>
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{AMC12 box|year=2017|ab=A|num-b=5|num-a=7}}

Revision as of 14:50, 8 February 2017

Problem

Joy has $30$ thin rods, one each of every integer length from $1 \text{ cm}$ through $30 \text{ cm}$. She places the rods with lengths $3 \text{ cm}$, $7 \text{ cm}$, and $15 \text{cm}$ on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?


$\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 17 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 19  \qquad\textbf{(E)}\ 20$

Solution

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions