Difference between revisions of "2017 AMC 10A Problems/Problem 5"

m
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 12</math>
 
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 12</math>
 +
 +
==Solution==
 +
 +
Let the two real numbers be <math>x,y</math>. We are given that
 +
 +
<cmath>x+y=4xy,</cmath>
 +
 +
and dividing both sides by <math>xy</math>,
 +
 +
<cmath>\frac{x}{xy}+\frac{y}{xy}=4</cmath>
 +
 +
<cmath>\frac{1}{y}+\frac{1}{x}=\boxed{4 (D)}.</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=A|num-b=4|num-a=6}}
 
{{AMC10 box|year=2017|ab=A|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:06, 8 February 2017

Problem

The sum of two nonzero real numbers is 4 times their product. What is the sum of the reciprocals of the two numbers?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 12$

Solution

Let the two real numbers be $x,y$. We are given that

\[x+y=4xy,\]

and dividing both sides by $xy$,

\[\frac{x}{xy}+\frac{y}{xy}=4\]

\[\frac{1}{y}+\frac{1}{x}=\boxed{4 (D)}.\]

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png