Difference between revisions of "2017 AMC 10A Problems/Problem 13"

Line 1: Line 1:
 +
==Problem==
 +
 
Define a sequence recursively by <math>F_{0}=0,~F_{1}=1,</math> and <math>F_{n}=</math> the remainder when <math>F_{n-1}+F_{n-2}</math> is divided by <math>3,</math> for all <math>n\geq 2.</math> Thus the sequence starts <math>0,1,1,2,0,2,\ldots</math> What is <math>F_{2017}+F_{2018}+F_{2019}+F_{2020}+F_{2021}+F_{2022}+F_{2023}+F_{2024}?</math>
 
Define a sequence recursively by <math>F_{0}=0,~F_{1}=1,</math> and <math>F_{n}=</math> the remainder when <math>F_{n-1}+F_{n-2}</math> is divided by <math>3,</math> for all <math>n\geq 2.</math> Thus the sequence starts <math>0,1,1,2,0,2,\ldots</math> What is <math>F_{2017}+F_{2018}+F_{2019}+F_{2020}+F_{2021}+F_{2022}+F_{2023}+F_{2024}?</math>
  
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10</math>
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10</math>
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{AMC10 box|year=2017|ab=A|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 15:53, 8 February 2017

Problem

Define a sequence recursively by $F_{0}=0,~F_{1}=1,$ and $F_{n}=$ the remainder when $F_{n-1}+F_{n-2}$ is divided by $3,$ for all $n\geq 2.$ Thus the sequence starts $0,1,1,2,0,2,\ldots$ What is $F_{2017}+F_{2018}+F_{2019}+F_{2020}+F_{2021}+F_{2022}+F_{2023}+F_{2024}?$

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png