Difference between revisions of "2017 AMC 10A Problems/Problem 22"
m |
(→Problem) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \mathrm{(E) \ } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}</math> | <math> \mathrm{(A) \ }\dfrac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \mathrm{(E) \ } \frac{4}{3}-\dfrac{4\sqrt{3}\pi}{27}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Let the radius of the circle be r, and let its center be O. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle O, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to r, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the triangle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=A|num-b=21|num-a=23}} | {{AMC10 box|year=2017|ab=A|num-b=21|num-a=23}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:56, 8 February 2017
Problem
Sides and of equilateral triangle are tangent to a circle as points and respectively. What fraction of the area of lies outside the circle?
Solution
Let the radius of the circle be r, and let its center be O. Since and are tangent to circle O, then , so . Therefore, since and are equal to r, then (pick your favorite method) . The area of the equilateral triangle is , and the area of the sector we are subtracting from it is . The area outside of the triangle is . Therefore, the answer is
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.