Difference between revisions of "2017 AMC 10A Problems/Problem 21"

m
(Solution)
Line 61: Line 61:
 
</asy>
 
</asy>
  
Similarly, <math>\triangle A'B'C'</math> and <math>\triangle RB'Q</math> are similar, so <math>RB' = \frac{4}{3}y</math>, and <math>C'S = \frac{3}{4}y</math>. Thus, <math>C'B' = C'S + SR + RB' = \frac{4}{3}y + y + \frac{3}{4}y = 5</math>. Solving for <math>y</math>, we get <math>y = \frac{60}{37}</math>. Thus, <math>\frac{x}{y} = \frac{37}{35}</math>.
+
Similarly, <math>\triangle A'B'C'</math> and <math>\triangle RB'Q</math> are similar, so <math>RB' = \frac{4}{3}y</math>, and <math>C'S = \frac{3}{4}y</math>. Thus, <math>C'B' = C'S + SR + RB' = \frac{4}{3}y + y + \frac{3}{4}y = 5</math>. Solving for <math>y</math>, we get <math>y = \frac{60}{37}</math>. Thus, <math>\frac{x}{y} = \boxed{\textbf{(D)}\:\frac{37}{35}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=A|num-b=20|num-a=22}}
 
{{AMC10 box|year=2017|ab=A|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:11, 9 February 2017

Problem

A square with side length $x$ is inscribed in a right triangle with sides of length $3$, $4$, and $5$ so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length $y$ is inscribed in another right triangle with sides of length $3$, $4$, and $5$ so that one side of the square lies on the hypotenuse of the triangle. What is $\tfrac{x}{y}$?

$\textbf{(A) } \dfrac{12}{13} \qquad \textbf{(B) } \dfrac{35}{37} \qquad \textbf{(C) } 1 \qquad \textbf{(D) } \dfrac{37}{35} \qquad \textbf{(E) } \dfrac{13}{12}$

Solution

Analyze the first right triangle.

[asy] pair A,B,C; pair D, e, F; A = (0,0); B = (4,0); C = (0,3);  D = (0, 12/7); e = (12/7 , 12/7); F = (12/7, 0);  draw(A--B--C--cycle); draw(D--e--F);  label("$x$", D/2, W); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, W); label("$E$", e, NE); label("$F$", F, S); [/asy]

Note that $\triangle ABC$ and $\triangle FBE$ are similar, so $\frac{BF}{FE} = \frac{AB}{AC}$. This can be written as $\frac{4-x}{x}=\frac{4}{3}$. Solving, $x = \frac{12}{7}$.

Now we analyze the second triangle.


[asy] pair A,B,C; pair q, R, S, T; A = (0,0); B = (4,0); C = (0,3);  q = (1.297, 0); R = (2.27 , 1.297); S = (0.973, 2.27); T  = (0, 0.973);  draw(A--B--C--cycle); draw(q--R--S--T--cycle);  label("$y$", (q+R)/2, NW); label("$A'$", A, SW); label("$B'$", B, SE); label("$C'$", C, N); label("$Q$", (q-(0,0.3))); label("$R$", R, NE); label("$S$", S, NE); label("$T$", T, W); [/asy]

Similarly, $\triangle A'B'C'$ and $\triangle RB'Q$ are similar, so $RB' = \frac{4}{3}y$, and $C'S = \frac{3}{4}y$. Thus, $C'B' = C'S + SR + RB' = \frac{4}{3}y + y + \frac{3}{4}y = 5$. Solving for $y$, we get $y = \frac{60}{37}$. Thus, $\frac{x}{y} = \boxed{\textbf{(D)}\:\frac{37}{35}}$.

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png