Difference between revisions of "2017 AMC 12A Problems/Problem 7"
(→Solution) |
|||
Line 8: | Line 8: | ||
<math>\boxed{\textbf{(B)}}</math> | <math>\boxed{\textbf{(B)}}</math> | ||
− | Alternatively, simply download java and run this | + | Alternatively, simply download java and run this method: |
− | + | ||
− | + | ||
public static int f(int n){ | public static int f(int n){ | ||
if(n == 1) | if(n == 1) | ||
Line 19: | Line 19: | ||
return f(n-2) + 2; | return f(n-2) + 2; | ||
} | } | ||
− | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2017|ab=A|num-b=6|num-a=8}} | {{AMC12 box|year=2017|ab=A|num-b=6|num-a=8}} |
Revision as of 11:35, 9 February 2017
Problem
Define a function on the positive integers recursively by , if is even, and if is odd and greater than . What is ?
Solution
This is a recursive function, which means the function is used to evaluate itself. To solve this, we must identify the base case, . We also know that when is odd, . Thus we know that . Thus we know that n will always be odd in the recursion of , and we add two each recursive cycle, which there are of. Thus the answer is .
Alternatively, simply download java and run this method:
public static int f(int n){ if(n == 1) return 2; else if(n % 2 == 0) return f(n-1) + 2; else return f(n-2) + 2; }
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |