Difference between revisions of "2017 AIME II Problems/Problem 12"
The turtle (talk | contribs) (Created page with "<math>\textbf{Problem 12}</math> Circle <math>C_0</math> has radius <math>1</math>, and the point <math>A_0</math> is a point on the circle. Circle <math>C_1</math> has radius...") |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
Circle <math>C_0</math> has radius <math>1</math>, and the point <math>A_0</math> is a point on the circle. Circle <math>C_1</math> has radius <math>r<1</math> and is internally tangent to <math>C_0</math> at point <math>A_0</math>. Point <math>A_1</math> lies on circle <math>C_1</math> so that <math>A_1</math> is located <math>90^{\circ}</math> counterclockwise from <math>A_0</math> on <math>C_1</math>. Circle <math>C_2</math> has radius <math>r^2</math> and is internally tangent to <math>C_1</math> at point <math>A_1</math>. In this way a sequence of circles <math>C_1,C_2,C_3,\cdots</math> and a sequence of points on the circles <math>A_1,A_2,A_3,\cdots</math> are constructed, where circle <math>C_n</math> has radius <math>r^n</math> and is internally tangent to circle <math>C_{n-1}</math> at point <math>A_{n-1}</math>, and point <math>A_n</math> lies on <math>C_n</math> <math>90^{\circ}</math> counterclockwise from point <math>A_{n-1}</math>, as shown in the figure below. There is one point <math>B</math> inside all of these circles. When <math>r = \frac{11}{60}</math>, the distance from the center <math>C_0</math> to <math>B</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Circle <math>C_0</math> has radius <math>1</math>, and the point <math>A_0</math> is a point on the circle. Circle <math>C_1</math> has radius <math>r<1</math> and is internally tangent to <math>C_0</math> at point <math>A_0</math>. Point <math>A_1</math> lies on circle <math>C_1</math> so that <math>A_1</math> is located <math>90^{\circ}</math> counterclockwise from <math>A_0</math> on <math>C_1</math>. Circle <math>C_2</math> has radius <math>r^2</math> and is internally tangent to <math>C_1</math> at point <math>A_1</math>. In this way a sequence of circles <math>C_1,C_2,C_3,\cdots</math> and a sequence of points on the circles <math>A_1,A_2,A_3,\cdots</math> are constructed, where circle <math>C_n</math> has radius <math>r^n</math> and is internally tangent to circle <math>C_{n-1}</math> at point <math>A_{n-1}</math>, and point <math>A_n</math> lies on <math>C_n</math> <math>90^{\circ}</math> counterclockwise from point <math>A_{n-1}</math>, as shown in the figure below. There is one point <math>B</math> inside all of these circles. When <math>r = \frac{11}{60}</math>, the distance from the center <math>C_0</math> to <math>B</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
[asy] | [asy] | ||
Line 14: | Line 14: | ||
[/asy] | [/asy] | ||
− | + | ==Solution== | |
<math>\boxed{110}</math> | <math>\boxed{110}</math> | ||
+ | |||
+ | =See Also= | ||
+ | {{AIME box|year=2017|n=II|num-b=11|num-a=13}} | ||
+ | {{MAA Notice}} |
Revision as of 12:01, 23 March 2017
Problem
Circle has radius , and the point is a point on the circle. Circle has radius and is internally tangent to at point . Point lies on circle so that is located counterclockwise from on . Circle has radius and is internally tangent to at point . In this way a sequence of circles and a sequence of points on the circles are constructed, where circle has radius and is internally tangent to circle at point , and point lies on counterclockwise from point , as shown in the figure below. There is one point inside all of these circles. When , the distance from the center to is , where and are relatively prime positive integers. Find . [asy] draw(Circle((0,0),125)); draw(Circle((25,0),100)); draw(Circle((25,20),80)); draw(Circle((9,20),64)); dot((125,0)); label("",(125,0),E); dot((25,100)); label("",(25,100),SE); dot((-55,20)); label("",(-55,20),E); [/asy]
Solution
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.