Difference between revisions of "2017 AIME II Problems/Problem 9"
Franchester (talk | contribs) (→Solution) |
The turtle (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | A special deck of cards contains <math>49</math> cards, each labeled with a number from <math>1</math> to <math>7</math> and colored with one of seven | + | A special deck of cards contains <math>49</math> cards, each labeled with a number from <math>1</math> to <math>7</math> and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and <math>\textit{still}</math> have at least one card of each color and at least one card with each number if <math>\frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>. |
==Solution== | ==Solution== |
Revision as of 16:45, 23 March 2017
Problem
A special deck of cards contains cards, each labeled with a number from to and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and have at least one card of each color and at least one card with each number if , where and are relatively prime positive integers. Find .
Solution
There have to be of cards sharing the same number and of them sharing same color.
pairs of cards can't be the same or else there will be card which are completely same.
WLOG the numbers are and and the colors are and Then we can get cases:
Case One: and in this case, we can discard . there are situations in this case.
Case Two: and In this case, we can't discard. There are situations in this case
So the probability is
The answer is
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.