Difference between revisions of "2017 AIME II Problems/Problem 10"

m (Solution)
m (Solution)
Line 31: Line 31:
 
label("56",(28,42)--(84,42),N);
 
label("56",(28,42)--(84,42),N);
 
</asy>
 
</asy>
Impose a coordinate system on the diagram where point <math>D</math> is the origin. Therefore <math>A=(0,42)</math>, <math>B=(84,42)</math>, <math>C=(84,0)</math>, and <math>D=(0,0)</math>. Because <math>M</math> is a midpoint and <math>M</math> is a trisection point, <math>M=(0,21)</math> and <math>N=(28,42)</math>. The equation for line <math>DN</math> is <math>y=\frac{3}{2}x</math> and the equation for line <math>CM</math> is <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, so their intersection, point <math>O</math>, is <math>(12,18)</math>. Using the shoelace formula on quadrilateral <math>BCON</math>, or or drawing diagonal <math>\overline{BO}</math> and using <math>\frac 12 bh</math>, we find that its area is <math>2184</math>. Therefore the area of triangle <math>BCP</math> is <math>\frac{2184}{2}</math> and the distance from <math>P</math> to line <math>PC</math> is <math>52</math> and its <math>x</math>-coordinate is <math>32</math>. Because <math>P</math> lies on the equation <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, <math>P</math>'s <math>y</math>-coordinate is <math>13</math>, which is also the height of <math>CDP</math>. Therefore the area of <math>CDP</math> is <math>\frac{1}{2} \cdot 13 \cdot 84=\boxed{546}</math>.
+
Impose a coordinate system on the diagram where point <math>D</math> is the origin. Therefore <math>A=(0,42)</math>, <math>B=(84,42)</math>, <math>C=(84,0)</math>, and <math>D=(0,0)</math>. Because <math>M</math> is a midpoint and <math>N</math> is a trisection point, <math>M=(0,21)</math> and <math>N=(28,42)</math>. The equation for line <math>DN</math> is <math>y=\frac{3}{2}x</math> and the equation for line <math>CM</math> is <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, so their intersection, point <math>O</math>, is <math>(12,18)</math>. Using the shoelace formula on quadrilateral <math>BCON</math>, or or drawing diagonal <math>\overline{BO}</math> and using <math>\frac 12 bh</math>, we find that its area is <math>2184</math>. Therefore the area of triangle <math>BCP</math> is <math>\frac{2184}{2}</math> and the distance from <math>P</math> to line <math>PC</math> is <math>52</math> and its <math>x</math>-coordinate is <math>32</math>. Because <math>P</math> lies on the equation <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, <math>P</math>'s <math>y</math>-coordinate is <math>13</math>, which is also the height of <math>CDP</math>. Therefore the area of <math>CDP</math> is <math>\frac{1}{2} \cdot 13 \cdot 84=\boxed{546}</math>.
  
 
=See Also=
 
=See Also=
 
{{AIME box|year=2017|n=II|num-b=9|num-a=11}}
 
{{AIME box|year=2017|n=II|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:58, 17 December 2017

Problem

Rectangle $ABCD$ has side lengths $AB=84$ and $AD=42$. Point $M$ is the midpoint of $\overline{AD}$, point $N$ is the trisection point of $\overline{AB}$ closer to $A$, and point $O$ is the intersection of $\overline{CM}$ and $\overline{DN}$. Point $P$ lies on the quadrilateral $BCON$, and $\overline{BP}$ bisects the area of $BCON$. Find the area of $\triangle CDP$.

Solution

[asy] pair A,B,C,D,M,n,O,P; A=(0,42);B=(84,42);C=(84,0);D=(0,0);M=(0,21);n=(28,42);O=(12,18);P=(32,13); fill(C--D--P--cycle,lightgray); draw(A--B--C--D--cycle); draw(C--M); draw(D--n); draw(B--P); draw(D--P); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,W); label("$N$",n,N); label("$O$",O,(-0.5,1)); label("$P$",P,N); dot(A); dot(B); dot(C); dot(D); dot(M); dot(n); dot(O); dot(P); label("28",(0,42)--(28,42),N); label("56",(28,42)--(84,42),N); [/asy] Impose a coordinate system on the diagram where point $D$ is the origin. Therefore $A=(0,42)$, $B=(84,42)$, $C=(84,0)$, and $D=(0,0)$. Because $M$ is a midpoint and $N$ is a trisection point, $M=(0,21)$ and $N=(28,42)$. The equation for line $DN$ is $y=\frac{3}{2}x$ and the equation for line $CM$ is $\frac{1}{84}x+\frac{1}{21}y=1$, so their intersection, point $O$, is $(12,18)$. Using the shoelace formula on quadrilateral $BCON$, or or drawing diagonal $\overline{BO}$ and using $\frac 12 bh$, we find that its area is $2184$. Therefore the area of triangle $BCP$ is $\frac{2184}{2}$ and the distance from $P$ to line $PC$ is $52$ and its $x$-coordinate is $32$. Because $P$ lies on the equation $\frac{1}{84}x+\frac{1}{21}y=1$, $P$'s $y$-coordinate is $13$, which is also the height of $CDP$. Therefore the area of $CDP$ is $\frac{1}{2} \cdot 13 \cdot 84=\boxed{546}$.

See Also

2017 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png