Difference between revisions of "2017 USAJMO Problems/Problem 3"
(→Solution) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
(<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math>PB</math> intersect at <math>D</math>; let lines <math>PB</math> and <math>CA</math> intersect at <math>E</math>; and let lines <math>PC</math> and <math>AB</math> intersect at <math>F</math>. Prove that the area of triangle <math>DEF</math> is twice that of triangle <math>ABC</math>. | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math>PB</math> intersect at <math>D</math>; let lines <math>PB</math> and <math>CA</math> intersect at <math>E</math>; and let lines <math>PC</math> and <math>AB</math> intersect at <math>F</math>. Prove that the area of triangle <math>DEF</math> is twice that of triangle <math>ABC</math>. | ||
− | |||
− | |||
<asy> | <asy> | ||
− | size( | + | size(3inch); |
pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), P = (0, -sqrt(3)), D = (0, 0), E1 = (6, -3sqrt(3)), F = (-6, -3sqrt(3)), O = (0, sqrt(3)); | pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), P = (0, -sqrt(3)), D = (0, 0), E1 = (6, -3sqrt(3)), F = (-6, -3sqrt(3)), O = (0, sqrt(3)); | ||
draw(Circle(O, 2sqrt(3)), black); | draw(Circle(O, 2sqrt(3)), black); | ||
Line 21: | Line 19: | ||
label("F", F, SW); | label("F", F, SW); | ||
</asy> | </asy> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
{{MAA Notice}} | {{MAA Notice}} | ||
==See also== | ==See also== | ||
{{USAJMO newbox|year=2017|num-b=2|num-a=4}} | {{USAJMO newbox|year=2017|num-b=2|num-a=4}} |
Revision as of 18:17, 19 April 2017
Problem
() Let be an equilateral triangle and let be a point on its circumcircle. Let lines and intersect at ; let lines and intersect at ; and let lines and intersect at . Prove that the area of triangle is twice that of triangle .
Solution
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2017 USAJMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |