Difference between revisions of "2017 USAJMO Problems/Problem 1"

m (Solution 2)
m (Solution 2)
Line 10: Line 10:
 
==Solution 2==
 
==Solution 2==
 
Let <math>x</math> be any odd number above 1. We have <math>x^2-1=(x-1)(x+1).</math> Since <math>x-1</math> is even, <math>x^2-1 \equiv 0 \pmod{2x+2}.</math> This means that  <math>x^{x+2}-x^x \equiv 0 \pmod{2x+2},</math> and since x is odd, <math>x^{x+2}+(-x)^x \equiv 0 \pmod{2x+2},</math> or <math>x^{x+2}+x+2^x \equiv 0 \pmod{2x+2}.</math> This means for any odd x, the ordered triple <math>(x,x+2)</math> satisfies the condition. Since there are infinitely many values of <math>x</math> possible, there are infinitely many ordered triples, as desired.  
 
Let <math>x</math> be any odd number above 1. We have <math>x^2-1=(x-1)(x+1).</math> Since <math>x-1</math> is even, <math>x^2-1 \equiv 0 \pmod{2x+2}.</math> This means that  <math>x^{x+2}-x^x \equiv 0 \pmod{2x+2},</math> and since x is odd, <math>x^{x+2}+(-x)^x \equiv 0 \pmod{2x+2},</math> or <math>x^{x+2}+x+2^x \equiv 0 \pmod{2x+2}.</math> This means for any odd x, the ordered triple <math>(x,x+2)</math> satisfies the condition. Since there are infinitely many values of <math>x</math> possible, there are infinitely many ordered triples, as desired.  
 
(Credits to kingofgeedorah, 2016 MATHCOUNTS Champion)
 
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:41, 19 April 2017

Problem

Prove that there are infinitely many distinct pairs $(a,b)$ of relatively prime integers $a>1$ and $b>1$ such that $a^b+b^a$ is divisible by $a+b$.

Solution 1

Let $a = 2n-1$ and $b = 2n+1$. We see that $(2n \pm 1)^2 = 4n^2-4n+1 \equiv 1 \pmod{4n}$. Therefore, we have $(2n+1)^{2n-1} + (2n-1)^{2n+1} \equiv 2n + 1 + 2n - 1  = 4n \equiv 0 \pmod{4n}$, as desired.

(Credits to laegolas)

Solution 2

Let $x$ be any odd number above 1. We have $x^2-1=(x-1)(x+1).$ Since $x-1$ is even, $x^2-1 \equiv 0 \pmod{2x+2}.$ This means that $x^{x+2}-x^x \equiv 0 \pmod{2x+2},$ and since x is odd, $x^{x+2}+(-x)^x \equiv 0 \pmod{2x+2},$ or $x^{x+2}+x+2^x \equiv 0 \pmod{2x+2}.$ This means for any odd x, the ordered triple $(x,x+2)$ satisfies the condition. Since there are infinitely many values of $x$ possible, there are infinitely many ordered triples, as desired.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2017 USAJMO (ProblemsResources)
First Problem Followed by
Problem 2
1 2 3 4 5 6
All USAJMO Problems and Solutions