Difference between revisions of "2017 USAJMO Problems/Problem 1"
m (→Solution 2) |
m (→Solution 2) |
||
Line 10: | Line 10: | ||
==Solution 2== | ==Solution 2== | ||
Let <math>x</math> be any odd number above 1. We have <math>x^2-1=(x-1)(x+1).</math> Since <math>x-1</math> is even, <math>x^2-1 \equiv 0 \pmod{2x+2}.</math> This means that <math>x^{x+2}-x^x \equiv 0 \pmod{2x+2},</math> and since x is odd, <math>x^{x+2}+(-x)^x \equiv 0 \pmod{2x+2},</math> or <math>x^{x+2}+x+2^x \equiv 0 \pmod{2x+2}.</math> This means for any odd x, the ordered triple <math>(x,x+2)</math> satisfies the condition. Since there are infinitely many values of <math>x</math> possible, there are infinitely many ordered triples, as desired. | Let <math>x</math> be any odd number above 1. We have <math>x^2-1=(x-1)(x+1).</math> Since <math>x-1</math> is even, <math>x^2-1 \equiv 0 \pmod{2x+2}.</math> This means that <math>x^{x+2}-x^x \equiv 0 \pmod{2x+2},</math> and since x is odd, <math>x^{x+2}+(-x)^x \equiv 0 \pmod{2x+2},</math> or <math>x^{x+2}+x+2^x \equiv 0 \pmod{2x+2}.</math> This means for any odd x, the ordered triple <math>(x,x+2)</math> satisfies the condition. Since there are infinitely many values of <math>x</math> possible, there are infinitely many ordered triples, as desired. | ||
+ | |||
+ | {{CURRENTTIME}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:50, 19 April 2017
Contents
Problem
Prove that there are infinitely many distinct pairs of relatively prime integers and such that is divisible by .
Solution 1
Let and . We see that . Therefore, we have , as desired.
(Credits to laegolas)
Solution 2
Let be any odd number above 1. We have Since is even, This means that and since x is odd, or This means for any odd x, the ordered triple satisfies the condition. Since there are infinitely many values of possible, there are infinitely many ordered triples, as desired.
16:58
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2017 USAJMO (Problems • Resources) | ||
First Problem | Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |